BSEH Practice Paper (March 2024)

(2023-24)
Marking Scheme
MATHEMATICS

SET-B
CODE: 835

$\begin{aligned} & \Rightarrow \text { Important Instructions: - All answers provided in the Marking scheme are SUGGESTIVE } \\ & \bullet \text { Examiners are requested to accept all possible alternative correct answer(s). }\end{aligned}$		
	SECTION - A (1Mark $\times 20 \mathrm{Q}$)	
Q. No.	EXPECTED ANSWERS	Marks
Question 1.	Let R be the relation in the set \mathbf{N} given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{b}=\mathrm{a}+1, \mathrm{~b}>$ 5\}. Choose the correct answer.	
Solution:	(B) $(7,8) \in \mathrm{R}$	1
Question 2.	$\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$ is equal to	
Solution:	(B) $\frac{5 \pi}{6}$	1
Question 3.	If $A=\left[\begin{array}{rr}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, then $\mathrm{A}^{\prime} \mathrm{A}$ is:	
Solution:	(A) I	1
Question 4.	If A and B are invertible matrices, then which of the following is not correct	
Solution:	(D) $(\mathrm{A}+\mathrm{B})^{-1}=\mathrm{B}^{-1}+\mathrm{A}^{-1}$	1
Question 5.	If the vertices of a triangle are $(-2,-3),(3,2)$ and $(-1,-8)$, then by using determinants its area is	
Solution:	(A) 15	1
Question 6.	If $y=\log x^{2}$, then $\frac{d^{2} y}{d x^{2}}$ is equal to :	
Solution:	(A) $\frac{-2}{x^{2}}$	1
Question 7.	The antiderivative of $(1-x) \sqrt{x}$ equals:	
Solution:	(B) $\frac{2}{3} \mathrm{x}^{\frac{3}{2}}-\frac{2}{5} \mathrm{x}^{\frac{5}{2}}+\mathrm{C}$	1
Question 8.	$\int \mathrm{e}^{\mathrm{x}} \sec x(1+\tan x) \mathrm{dx}$ equals	
Solution:	(C) $e^{x} \sec x+C$	1
Question 9.	The value of $\int_{-\pi / 2}^{\pi / 2} \tan ^{5} x d x$ is	
Solution:	(C) 0	1
Question 10.	The degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1$ $=0$ is :	

Solution:	(D) not defined	1
Question 11.	How many number of arbitrary constants are there in the general solution of a differential equation of fourth order?	
Solution:	4	1
Question 12.	The function $f(x)=\left\{\begin{array}{ll}\frac{\sin \mathrm{x}}{\mathrm{x}}+\cos \mathrm{x}, & \text { if } \mathrm{x} \neq 0 \\ \mathrm{k} & , \text { if } \mathrm{x}=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then find the value of k	
Solution:	$\begin{aligned} & \lim _{X \rightarrow 0} f(x)=\lim _{X \rightarrow 0}\left(\frac{\sin x}{x}+\cos x\right) \\ & =1+1 \\ & =2 \end{aligned}$ Since $f(x)$ is continuous at $x=0$ $\begin{gathered} \therefore \lim _{\substack{\mathrm{X} \rightarrow 0 \\ \\ \Rightarrow 2}} \mathrm{f}(\mathrm{x})=\mathrm{k}(0) \\ \hline \end{gathered}$	1
Question 13.	If a line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the x, y and z -axes respectively, find its direction cosines.	
Solution:	Line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the x,y and z-axes respectively \therefore Direction Cosines are $\begin{array}{ll} l=\cos 90^{\circ}, & m \end{array}=\cos 135^{\circ}, \quad n=\cos 45^{\circ} .$	1
Question 14.	If $\mathrm{P}(\mathrm{A})=\frac{3}{5}$ and $\mathrm{P}(\mathrm{B})=\frac{1}{5}$, find $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ if A and B are independent events.	
Solution:	Since A and B are independent therefore $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$ $\therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{5} \times \frac{1}{5}=\frac{3}{25}$	1
Question 15.	\vec{a} and $-\vec{a}$ aer collinear. (True / False)	
Solution:	True	1
Question 16.	The probability of obtaining an even prime number on each die, when a pair of dice is rolled is $\frac{6}{36}$. (True / False)	
Solution:	False	1
Question 17.	If A and B are any two events such that $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})$, then $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ \qquad	
Solution:	1	1
Question 18.	The projection vector of $\vec{a}=\hat{\imath}+3 \hat{\jmath}+7 \hat{k}$ on $\vec{b}=7 \hat{\imath}-\hat{\jmath}+8 \hat{k}$ is	

\begin{tabular}{|c|c|c|}
\hline Solution: \& \[
\frac{60}{\sqrt{114}}
\] \& \\
\hline Question 19. \& \begin{tabular}{l}
Assertion (A): Let \(A=\{1,2\}\) and \(B=\{3,4\}\). Then, number of relations from \(A\) to \(B\) is 16 . \\
Reason (R): If \(n(A)=p\) and \(n(B)=q\), then number of relations is \(2^{\mathrm{pq}}\).
\end{tabular} \& \\
\hline Solution: \& (A). Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A) \& 1 \\
\hline Question 20. \& \begin{tabular}{l}
Assertion (A): The direction cosines of line \(\frac{x-5}{3}=\frac{y+4}{2}=\frac{z+8}{1}\) is \(\frac{3}{\sqrt{14}}\), \(\frac{2}{\sqrt{14}}, \frac{1}{\sqrt{14}}\). \\
Reason (R): The distance between two parallel lines \(\vec{r}=\overrightarrow{a_{1}}+\lambda \vec{b}\) and \(\vec{r}=\overrightarrow{a_{2}}+\mu \vec{b}\) is given by \(\mathrm{d}=\frac{\left|\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \times \vec{b}\right|}{|\vec{b}|}\).
\end{tabular} \& \\
\hline Solution: \& (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A) \& 1 \\
\hline \& SECTION - B (2Marks \(\times\) 5Q) \& \\
\hline Question 21. \& Show that the function \(f: R \rightarrow R\), defined as \(f(x)=x^{2}\), is neither oneone nor onto. \& \\
\hline Solution: \& \begin{tabular}{l}
\[
\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}
\] \\
Checking for ONE-ONE \\
let \(x_{1}\) and \(x_{2}\) are be any two real numbers.
\[
\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{x}_{1}{ }^{2} \text { and } \mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{x}_{2}^{2}
\] \\
Now \(f\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)\)
\[
\begin{aligned}
\& \Rightarrow \mathrm{x}_{1}^{2}=\mathrm{x}_{2}{ }^{2} \\
\& \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}, \mathrm{x}_{1}=-\mathrm{x}_{2}
\end{aligned}
\] \\
\(\Rightarrow\) Since \(\mathrm{x}_{1}\) does not have a unique image so \(\mathrm{f}(\mathrm{x})\) is not one-one. \\
Checking for ONTO \\
Let \(f(x)=y\) such that \(y \in \mathbf{R}\)
\[
\begin{aligned}
\& \Rightarrow x^{2}=y \\
\& \Rightarrow x= \pm \sqrt{y}
\end{aligned}
\] \\
Note that y is a real number, so it can be negative also \(\Rightarrow \mathrm{f}(\mathrm{x})\) is not an onto function. \\
(Note: Students can also use some illustrations to show \(f(x)\) neither one-one nor onto.)
\end{tabular} \& 1

1

\hline | OR |
| :--- |
| Question 21. | \& Find the value of: $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$ \&

\hline Solution: \& Let $\tan ^{-1} \sqrt{3}=\mathrm{x}$. Then $\tan \mathrm{x}=\sqrt{3}=\tan (\pi / 3)$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
We know that the range of the principal value branch of \(\tan ^{-1}\) is \(\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\)
\[
\therefore \tan ^{-1} \sqrt{3}=\pi / 3
\] \\
Let \(\sec ^{-1}(-2)=y\). Then, \(\sec y=-2=-\sec (\pi / 3)\)
\[
\sec y=-2=\sec \left(\pi-\frac{\pi}{3}\right)
\] \\
We know that the range of the principal value branch of \(\sec ^{-1}\) is
\[
\begin{aligned}
\& {[0, \pi]-\left\{\frac{\pi}{2}\right\}} \\
\& \therefore \sec ^{-1}(-2)=2 \pi / 3
\end{aligned}
\] \\
Now
\[
\begin{aligned}
\& \tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)=\pi / 3-2 \pi / 3 \\
\& =-\pi / 3
\end{aligned}
\]
\end{tabular} \& \(\frac{1}{2}\)

$\frac{1}{2}$

\hline Question 22. \& Construct a 3×2 matrix whose elements are given by $\mathrm{a}_{\mathrm{ij}}=\frac{1}{2}|\mathrm{i}-3 \mathrm{j}|$. \&

\hline Solution: \& | Since it is 3×2 Matrix |
| :--- |
| It has 3 rows and 2 columns |
| Let the matrix be A |
| Where $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$ |
| Now it is given that $\mathrm{a}_{\mathrm{ij}}=\frac{1}{2}\|\mathrm{i}-3 \mathrm{j}\|$ |
| Hence the required matrix is $\begin{array}{ll} a_{11}=1 & a_{12}=5 / 2 \\ a_{21}=1 / 2 & a_{22}=2 \\ a_{31}=0 & a_{32}=3 / 2 \end{array} \quad \Rightarrow \quad A=\left[\begin{array}{cc} 1 & 5 / 2 \\ 1 / 2 & 2 \\ 0 & 3 / 2 \end{array}\right]$ | \& $\frac{1}{2}$

$\frac{1}{2}$

\hline Question 23. \& Find the value of k so that the function is continuous is at $\mathrm{x}=1$.

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-1}{x-1}, & x \neq 1 \\
k & x=1
\end{array}\right.
$$ \&

\hline Solution: \& \&

\hline
\end{tabular}

	Given function is $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ k & x=1\end{array}\right.$ Now $\begin{align*} & \lim _{x \rightarrow 1} f(x)=>\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} \\ & \lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1}=\lim _{x \rightarrow 1}(x+1)=2 \tag{1} \end{align*}$ Since function is continuous, therefore $\begin{aligned} & \lim _{x \rightarrow 1} f(x)=f(1) \\ & k=2 \end{aligned}$	1 1
Question 24.	Verify that the function $y=a \cos x+b \sin x$, where $a, b \in \mathbf{R}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+y=0$	
Solution:	Given: $\mathrm{y}=\mathrm{a} \cos \mathrm{x}+\mathrm{b} \sin \mathrm{x}$ Diff. w.r.t. ' x ', and we get $\frac{d y}{d x}=-a \sin x+b \cos x$ Again differentiate (1) w.r.t. ' x ', we get $\begin{equation*} \frac{d^{2} y}{d x^{2}}=-a \cos x-b \sin x \tag{2} \end{equation*}$ Now, substitute (1) and (2) in the given differential equation, and we get the following: $\begin{aligned} & \text { L.H.S }=\frac{d^{2} y}{d x^{2}}+y x \\ & =(-a \cos x-b \sin x)+(a \cos x+b \sin x) \\ & =-a \cos x-b \sin x+a \cos x+b \sin x \\ & =0=\text { R.H.S } \end{aligned}$ As L.H.S = R.H.S, the given function is the solution of the corresponding differential equation.	$\frac{1}{2}$ $\frac{1}{2}$ 1
OR Question 24.	Find the general solution of the differential equation $\mathrm{y} \log \mathrm{y} d x-\mathrm{x} d y=0$	
Solution:	Since y $\log \mathrm{y} d x-\mathrm{x} d y=0$, therefore separating the variables, the given differential equation can be written as	

	$\begin{equation*} \frac{d y}{y \log y}=\frac{d y}{x} \tag{1} \end{equation*}$ Integrating both sides of equation (1), we get $\left\{\begin{array}{l} \int \frac{d y}{y \log y}=\int \frac{d y}{x} \\ \log \log y=\log x+C \end{array}\right.$ which is the general solution of equation (1)	$\frac{1}{2}$ $1 \frac{1}{2}$
Question 25.	An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black?	
Solution:	Total number of balls $=10$ black balls +5 red balls $=15$ balls Let A be the event of drawing a black ball in first draw and B be the events of drawing a black ball in second draw. $\mathrm{P}(\mathrm{A})=$ Probability of getting a black ball in the first draw $=\frac{10}{15}=\frac{2}{3}$ As the ball is not replaced after the first throw, $\therefore \mathrm{P}(\mathrm{B} / \mathrm{A})=$ Probability of getting another black ball in the second draw $=\frac{8}{14}=\frac{4}{7}$ Since the two balls are drawn without replacement, the two draws are not independent. $\mathrm{P}($ both balls are black $)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B} / \mathrm{A})$ Now, the probability of getting both balls red $=\frac{2}{3} \times \frac{4}{7}=\frac{8}{21}$	$\frac{1}{2}$ $\frac{1}{2}$
	SECTION - C (3Marks \times 8Q)	
Question 26.	Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y) $R(u, v$) if and only if $x v=y u$. Show that R is an equivalence relation.	
Solution:	Clearly, (x, y) R (x, y), $\quad \forall(\mathrm{x}, \mathrm{y}) \in \mathrm{A}$	

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Since \(x y=y x\) \\
This shows that R is reflexive.
\[
\begin{aligned}
\& \text { Further, }(x, y) R(u, v) \\
\& \begin{array}{l}
=x v=y u \\
=>\text { uy }=v x \\
=>(u, v) R(x, y)
\end{array} \quad \forall(x, y),(u, v) \in A
\end{aligned}
\] \\
This shows that R is symmetric.
\[
\begin{array}{lll}
\text { Similarly, (x,y) R (u, v) and (u, v) R (a, b) } \& \\
\Rightarrow \quad x v=y u \& \text { and } \& \text { ub }=v a \\
\Rightarrow \& \frac{x}{y}=\frac{u}{v} \& \text { and } \\
\frac{u}{v}=\frac{a}{b} \& \\
\Rightarrow \& \frac{x}{v}=\frac{a}{b} \& \\
\Rightarrow \& x b=y a \& \\
\text { Hence } \quad(x, y) R(a, b) \& \forall(x, y),(u, v)(a, b) \in A
\end{array}
\] \\
Thus, R is transitive. \\
Thus, R is an equivalence relation.
\end{tabular} \& 1

1
1

1

\hline $$
\begin{gathered}
\hline \text { OR } \\
\text { Question } 26 .
\end{gathered}
$$ \& Prove that: $\quad \cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}$ \&

\hline Solution: \& | $\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}$ |
| :--- |
| We know $\cos ^{-1} \mathrm{x}=\sin ^{-1} \sqrt{1-\mathrm{x}^{2}}$ |
| where $\mathrm{x}<1$ $\begin{aligned} \Rightarrow & \quad \cos ^{-1} \frac{12}{13} & =\sin ^{-1} \sqrt{1-\left(\frac{12}{13}\right)^{2}} \\ \Rightarrow & & =\sin ^{-1} \sqrt{\frac{25}{169}} \\ \Rightarrow & \cos ^{-1} \frac{12}{13} & =\sin ^{-1} \frac{5}{13} \end{aligned}$ |
| Now taking L.H.S. $=\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{3}{5}$ |
| We know that, $\begin{aligned} & \begin{aligned} & \sin ^{-1} \mathrm{x}+\sin ^{-1} \mathrm{y}=\sin ^{-1}\left[\mathrm{x} \sqrt{1-\mathrm{y}^{2}}+\mathrm{y} \sqrt{1-\mathrm{x}^{2}}\right] \text { if } \mathrm{xy}<1 \\ &=\sin ^{-1}\left[\frac{5}{13} \sqrt{1-\left(\frac{3}{5}\right)^{2}}+\right. \\ & \begin{aligned} \left.\frac{3}{5} \sqrt{1-\left(\frac{5}{13}\right)^{2}}\right] \end{aligned} \\ &=\sin ^{-1}\left[\frac{5}{13} \sqrt{\frac{16}{25}}+\frac{3}{5} \sqrt{\frac{144}{169}}\right] \\ &=\sin ^{-1}\left[\frac{5}{13}\left(\frac{4}{5}\right)+\frac{3}{5}\left(\frac{12}{13}\right)\right]=\sin ^{-1} \frac{56}{65} \end{aligned} \\ & \text { L.H.S. } \end{aligned}$ | \& | 1 |
| :--- |
| 1 |
| 2 |
| |
| |
| 1 |
| 1 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Question 27. \& If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, show that $F(x) \cdot F(y)=F(x+y)$ \&

\hline Solution: \& \& $\frac{1}{2}$

$1 \frac{1}{2}$

1

\hline Question 28. \& Find $\frac{d y}{d x}$ of the function $(\cos x)^{y}=(\operatorname{cosy})^{x}$. \&

\hline Solution: \& | Given: $(\cos x)^{y}=(\cos y)^{x}$ $(\cos x)^{y}=(\cos y)^{x}$ |
| :--- |
| Taking \log on both sides $\begin{aligned} & \log \left((\cos x)^{y}\right)=\log \left((\cos y)^{x}\right) \\ & y \cdot \log (\cos x)=x \cdot \log (\cos y) \end{aligned}$ |
| Diff. on both sides w.r.t. ' x ' $\frac{d}{d x}(y \cdot \log (\cos x))=\frac{d}{d x}(x \cdot \log (\cos y))$ | \& 1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& $$
\begin{aligned}
& y \cdot \frac{1}{\cos x}(-\sin x)+\log (\cos x) \cdot \frac{d y}{d x}=x \cdot \frac{1}{\cos y}(-\sin y) \cdot \frac{d y}{d x}+\log (\cos y) \cdot 1 \\
& -y \cdot(\tan x)+\log (\cos x) \cdot \frac{d y}{d x}=-x \cdot(\tan y) \cdot \frac{d y}{d x}+\log (\cos y) \\
& (\log (\cos x)+x(\tan y)) \cdot \frac{d y}{d x}=\log (\cos y)-y \cdot(\tan x) \\
& \frac{d y}{d x}=\frac{\log (\cos y)-y \cdot(\tan x)}{\log (\cos x)+x \cdot(\tan y)}
\end{aligned}
$$ \& $1 \frac{1}{2}$

$\frac{1}{2}$

\hline Question 29. \& Find the intervals in which the function f is given by $\quad(x)=$ $-2 x^{3}-9 x^{2}-12 x+1$ is strictly increasing or strictly decreasing. \&

\hline Solution: \& | Given function: $f(x)=-2 x^{3}-9 x^{2}-12 x+1$ $\begin{align*} & f^{\prime}(x)=-6 x^{2}-18 x-12=-6\left(x^{2}+3 x+2\right) \\ & f^{\prime}(x)=-6(x+2)(x+1) \tag{1} \end{align*}$ |
| :--- |
| Now for increasing or decreasing, $\mathrm{f}^{\prime}(\mathrm{x})=0$ $\begin{aligned} & -6(x+2)(x+1)=0 \\ & x+2=0 \text { or } x+1=0 \\ & x=-2 \text { or } x=-1 \end{aligned}$ |
| Therefore, we have sub-intervals are $(-\infty,-2),(-2,-1)$ and $(-1, \infty)$ |
| For interval $(-\infty,-2)$, picking $x=-3$, from equation (1), $\mathrm{f}^{\prime}(\mathrm{x})=(-\mathrm{ve})(-\mathrm{ve})(-\mathrm{ve})=(-\mathrm{ve})<0$ |
| Therefore, f is strictly decreasing in $(-\infty,-2)$ |
| For interval $(-2,-1)$, picking $x=-1.5$, from equation (1), $\mathrm{f}^{\prime}(\mathrm{x})=(-\mathrm{ve})(+\mathrm{ve})(-\mathrm{ve})=(+\mathrm{ve})>0$ |
| Therefore, f is strictly increasing in $(-2,-1)$. |
| For interval $(-1, \infty)$, picking $x=4$, from equation (1), $\mathrm{f}^{\prime}(\mathrm{x})=(-\mathrm{ve})(+\mathrm{ve})(+\mathrm{ve})=(-\mathrm{ve})<0$ |
| Therefore, is strictly decreasing in $(-1, \infty)$. |
| So, f is strictly decreasing in $(-\infty,-2)$ and $(-1, \infty)$. |
| f is strictly increasing in $(-2,-1)$. | \& $\frac{1}{2}$

1

$\frac{1}{2}$
$\frac{1}{2}$

$\frac{1}{2}$

\hline Question 30. \& Integrate: $\int \frac{4 \mathrm{x}+1}{\sqrt{2 \mathrm{x}^{2}+\mathrm{x}-3}} \mathrm{dx}$ \&

\hline Solution: \& It is given that $I=\int \frac{4 \mathrm{x}+1}{\sqrt{2 \mathrm{x}^{2}+\mathrm{x}-3}} \mathrm{dx}$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Here form of integral is \(\int \frac{\mathrm{px}+\mathrm{q}}{\sqrt{\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}}} \mathrm{dx}\)
\[
\begin{align*}
\& \therefore 4 \mathrm{x}+1=\mathrm{A} \frac{\mathrm{~d}}{\mathrm{dx}}\left(2 \mathrm{x}^{2}+\mathrm{x}-3\right)+\mathrm{B} \\
\& 4 \mathrm{x}+1=\mathrm{A}(2 \mathrm{x}+1)+\mathrm{B} \tag{1}
\end{align*}
\] \\
On comparing the like terms, we have \\
Put \(2 \mathrm{x}^{2}+\mathrm{x}-3=\mathrm{t} \Rightarrow(4 \mathrm{x}+1) \mathrm{dx}=\mathrm{dt}\)
\[
\begin{aligned}
\& I=2 \int \frac{1}{\sqrt{t}} d t-\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x^{2}+\frac{1}{2} x-\frac{3}{2}}} d x \\
\& I=4 \sqrt{t}-\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x^{2}+\frac{1}{2} x-\frac{3}{2}}} d x \\
\& I=4 \sqrt{2 x^{2}+x-3}-\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x^{2}+\frac{1}{2} x+\frac{1}{4}-\frac{1}{4}-\frac{3}{2}}} d x \quad \text { (completing the square) } \\
\& I=4 \sqrt{2 x^{2}+x-3}-\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{7}}{4}\right)^{2}}} d x \\
\& I=4 \sqrt{2 x^{2}+x-3}-\frac{1}{\sqrt{2}} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{7}}{4}\right)^{2}}\right|+C \\
\& I=4 \sqrt{2 x^{2}+x-3}-\frac{1}{\sqrt{2}} \log \left|\frac{(2 x+1)+\sqrt{2 x^{2}+x-3}}{2}\right|+C
\end{aligned}
\]
\end{tabular} \& 1

1

\hline $$
\begin{array}{|c|}
\hline \text { OR } \\
\text { Question } 30 . \\
\hline
\end{array}
$$ \& Evaluate: $\int_{2}^{8}|\mathrm{x}-5| \mathrm{dx}$ \&

\hline Solution: \& $$
\begin{aligned}
& I=\int_{2}^{8}|x-5| d x \\
& \text { We know }|x-5|=\left\{\begin{aligned}
-(x-5), & x \leq 5 \\
(x-5), & x>5
\end{aligned}\right. \\
& I=\int_{2}^{5}|x-5| d x+\int_{5}^{8}|x-5| d x \\
& I=\int_{2}^{5}-(x-5) d x+\int_{5}^{8}(x-5) d x
\end{aligned}
$$ \& $\frac{1}{2}$

\hline
\end{tabular}

	$\begin{aligned} & I=\left\|\frac{-(x-5)^{2}}{2}\right\|_{2}^{5}+\left\|\frac{(x-5)^{2}}{2}\right\|_{5}^{8} \\ & I=\left(\frac{-(0)^{2}}{2}-\frac{-(-3)^{2}}{2}\right)+\left(\frac{(3)^{2}}{2}-\frac{(0)^{2}}{2}\right) \\ & I=\frac{9}{2}+\frac{9}{2} \\ & I=9 \end{aligned}$	$\underbrace{1 \frac{1}{2}}$
Question 31.	Find the area of a triangle having points $\mathrm{A}(1,1,1), \mathrm{B}(1,2,3)$ and $\mathrm{C}(2,3,1)$ as its vertices.	
Solution:	We have $\overrightarrow{A B}=(1-1) \hat{\imath}+(2-1) \hat{\jmath}+(3-1) \hat{k}=\hat{\jmath}+2 \hat{k}$ and $\overrightarrow{A C}=(2-1) \hat{\imath}-(3-1) \hat{\jmath}-(1-1) \hat{k}=\hat{\imath}-2 \hat{\jmath}$ Area of the given triangle is $\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\|$. Now $\begin{aligned} \overrightarrow{A B} \times \overrightarrow{A C} & =\left\|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{array}\right\| \\ & =-4 \hat{\imath} \mp 2 \hat{\jmath}-\hat{k} \end{aligned}$ Therefore, $\quad\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\sqrt{16+4+1}=\sqrt{21}$ Thus the required area is $\frac{1}{2} \sqrt{21}$.	$1 / 2$ $1 / 2$ 1
	SECTION - C (5Marks \times 4Q)	
Question 32.	Use product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the system of equations $x-y+2 z=1 ; 2 y-3 z=1 ; 3 x-2 y+4 z=2$	
Solution:	$\begin{aligned} & {\left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{array}\right]\left[\begin{array}{ccc} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{array}\right]==} \\ & {\left[\begin{array}{ccc} -2-9+12 & -2+2 & 1+3-4 \\ 18-18 & 4-3 & -6+6 \\ -6-18+24 & -4+4 & 3+6-8 \end{array}\right]} \\ & {\left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{array}\right]\left[\begin{array}{ccc} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]} \end{aligned}$	

	$\begin{aligned} & \begin{array}{r} \mathrm{x}-\mathrm{y}+2 \mathrm{z}=1 \\ 2 \mathrm{y}-3 \mathrm{z}=1 \\ 3 \mathrm{x}-2 \mathrm{y}+4 \mathrm{z}=2 \end{array} \\ & \therefore \mathrm{~A}=\left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{array}\right], B=\left[\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right] \text { and } \mathrm{X}=\left[\begin{array}{l} \mathrm{x} \\ \mathrm{y} \\ \mathrm{z} \end{array}\right] \\ & \|\mathrm{A}\|=1(8-6)+1(0+9)+2(0-6)=2+9-12 \\ & =-1 \neq 0 \end{aligned}$ \therefore Inverse of matrix exists. Now by using the product the inverse of matrix A is $\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ $\Rightarrow \mathrm{A}^{-1}=\left[\begin{array}{ccc} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{array}\right]$ Now, matrix of equations can be written as: $\mathrm{AX}=\mathrm{B}$ $\left[\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{array}\right]\left[\begin{array}{l} \mathrm{x} \\ \mathrm{y} \\ \mathrm{z} \end{array}\right]=\left[\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right]$ And, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$ $\begin{aligned} & {\left[\begin{array}{l} \mathrm{x} \\ \mathrm{y} \\ \mathrm{z} \end{array}\right]=\left[\begin{array}{ccc} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{array}\right]\left[\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right]} \\ & {\left[\begin{array}{l} \mathrm{x} \\ \mathrm{y} \\ \mathrm{z} \end{array}\right]=\left[\begin{array}{l} 0 \\ 5 \\ 3 \end{array}\right]} \end{aligned}$ Therefore, $\mathrm{x}=0, \mathrm{y}=5$ and $\mathrm{z}=3$.	$1 \frac{1}{2}$ 1 1 1 1 1
Question 33.	Find the shortest distance between the lines $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$	
Solution:	Given lines are $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ \therefore Corresponding vector equations of given lines are $\begin{equation*} \vec{r}=-\hat{\imath}-\hat{\jmath}-\hat{k}+\lambda(7 \hat{\imath}-6 \hat{\jmath}+\hat{k}) \tag{1} \end{equation*}$ and $\quad \vec{r}=3 \hat{\imath}+5 \hat{\jmath}+7 \hat{k}+\mu(\hat{\imath}-2 \hat{\jmath}+\hat{k})$ Comparing (1) and (2) with $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ respectively, we get	$\frac{1}{2}$

	$\begin{array}{lll} \overrightarrow{a_{1}}=-\hat{\imath}-\hat{\jmath}-\hat{k}, & \text { and } & \overrightarrow{b_{1}}=7 \hat{\imath}-6 \hat{\jmath}+\hat{k} \\ \overrightarrow{a_{2}}=3 \hat{\imath}+5 \hat{\jmath}+7 \hat{k} & \text { and } & \overrightarrow{b_{2}}=\hat{\imath}-2 \hat{\jmath}+\hat{k} \end{array}$ Therefore $\overrightarrow{a_{2}}-\overrightarrow{a_{1}}=4 \hat{\imath}+6 \hat{\jmath}+8 \hat{k}$ And $\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=(7 \hat{\imath}-6 \hat{\jmath}+\hat{k}) \times(\hat{\imath}-2 \hat{\jmath}+\hat{k})$ $\begin{aligned} & =\left\|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 7 & -6 & 1 \\ 1 & -2 & 1 \end{array}\right\|=-4 \hat{\imath}-6 \hat{\jmath}-8 \hat{k} \\ & \left\|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right\|=\sqrt{16+36+64}=\sqrt{116} \end{aligned}$ Hence, the shortest distance between the given lines is given by $\begin{aligned} & \mathrm{D}=\frac{\left\|\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)\right\|}{\left\|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right\|}=\frac{\|(4 \hat{\imath}+6 \hat{\jmath}+8 \hat{k}) \cdot(-4 \hat{\imath}-6 \hat{\jmath}-8 \hat{k})\|}{\sqrt{116}} \\ & \frac{\|-16-36-64\|}{\sqrt{116}}=\frac{116}{\sqrt{116}}=\sqrt{116}=2 \sqrt{29} \end{aligned}$	$\frac{1}{2}$ 1 1 $\frac{1}{2}$ $1 \frac{1}{2}$ 1
OR Question 33.	Find the vector equation of the line passing through the point $-2,-3)$ and perpendicular to the two lines: $\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-1}{3}$ and $\frac{x-2}{2}=\frac{y+1}{1}=\frac{z+1}{2}$.	
Solution:	The vector equation of a line passing through a point with position vector \vec{a} and parallel to $\overrightarrow{\mathrm{b}}$ is $\vec{r}=\vec{a}+\lambda \vec{b}$. It is given that, the line passes through $(1,-2,-3)$ So, $\quad \vec{a}=1 \hat{\imath}-2 \hat{\jmath}-3 \hat{k}$ Given lines are $\frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}-2}{-1}=\frac{\mathrm{z}-1}{3}$ and $\frac{\mathrm{x}-2}{2}=\frac{\mathrm{y}+1}{1}=\frac{\mathrm{z}+1}{2}$ It is also given that, line is perpendicular to both given lines. So we can say that the line is perpendicular to both parallel vectors of two given lines.	1

	We know that, $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ is perpendicular to both $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$, so let \vec{b} is cross product of parallel vectors of both lines i.e. $\vec{b}=\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}$ where $\overrightarrow{b_{1}}=\hat{\imath}-\hat{\jmath}+3 \hat{k} \quad$ and $\overrightarrow{b_{2}}=2 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ and Required Normal $\begin{aligned} & \vec{b}=\left\|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -1 & 3 \\ 2 & 1 & 2 \end{array}\right\| \\ & =\hat{\imath}(-2-3)-\hat{\jmath}(2-6)+\hat{k}(1+2) \\ & \vec{b}=-5 \hat{\imath}+4 \hat{\jmath}+3 \hat{k} \end{aligned}$ Now, by substituting the value of $\vec{a} \& \vec{b}$ in the formula $\vec{r}=\vec{a}+\lambda \vec{b}$, we get $\vec{r}=(1 \hat{\imath}-2 \hat{\jmath}-3 \hat{k})+\lambda(-5 \hat{\imath}+4 \hat{\jmath}+3 \hat{k})$	2 1
Question 34.	Find the area under the given curve $\mathrm{y}=\mathrm{x}^{2}$ and the given lines $\mathrm{x}=1$, $x=2$ and x-axis.	
Solution:	Equation of the curve is $y=x^{2}$. It is an upward parabola having vertex at origin and symmetrical about y -axis. $\mathrm{x}=1$ and $\mathrm{x}=2$ are two straight lines parallel to y -axis. $y=x^{2}$ (1) $x=1$ and $x=2$ Points of intersections of given curves At $\mathrm{x}=1, \mathrm{y}=1$ points are $(1,1)$ At $x=2, y=4$ points are $(2,4)$ \therefore Points in first quadrant $\mathrm{A}(1,1) \mathrm{B}(2,4)$ Points on x - axis with given lines are $(1,0)$ and $(2,0)$ Make a rough hand sketch of given curves by taking some corresponding values of x and y .	$\frac{1}{2}$ $1 \frac{1}{2}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
 \\
Required area is shaded region ABCD :
\[
\left|\left|\int_{1}^{2} y d x\right|=\left|\int_{1}^{2} x^{2} d x\right|\right.
\] \\
[From equation (1)]
\[
=\left|\frac{x^{3}}{3}\right|_{1}^{2}
\]
\[
=\frac{1}{3}\left|\left(2^{3}-1^{3}\right)\right|
\]
\[
=\frac{1}{3}|(8-1)|=\frac{1}{3}(7)=\frac{7}{3} \text { sq. units }
\]
\end{tabular} \& 2 \\
\hline \[
\begin{gather*}
\hline \text { OR } \tag{1}\\
\text { Question } 34 . \\
\hline
\end{gather*}
\] \& Find the area of the region bounded by the ellipse \(\frac{x^{2}}{4}+\frac{y^{2}}{9}=1\) \& \\
\hline Solution: \& \begin{tabular}{l}
Here \(\frac{x^{2}}{4}+\frac{y^{2}}{9}=1\) \\
It is a vertical ellipse having center at origin and is symmetrical about both axes (if we change y to -y or x to -x , equation remain same). \\
Standard equation of an ellipse is \(\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1\) \\
By comparing, \(\mathrm{a}=3\) and \(\mathrm{b}=2\) \\
From equation (1)
\[
\begin{align*}
\& \Rightarrow y^{2}=\frac{9}{4}\left(4-x^{2}\right) \\
\& \Rightarrow y=\frac{3}{2} \sqrt{4-x^{2}} \tag{2}
\end{align*}
\] \\
Points of Intersections of ellipse (1) with \(x\)-axis (\(\mathrm{y}=0\)) \\
Put \(y=0\) in equation (1), we have
\end{tabular} \& 1
\(\frac{1}{2}\)

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Question 35. \& \[
\begin{aligned}
\& \text { Solve the following problem graphically: } \\
\& \text { Minimise and Maximise } Z=5 x+10 y \\
\& \text { Subject to the constraints: } x+2 y \leq 120 \\
\& \qquad \begin{aligned}
x+y \& \geq 60 \\
x-2 y \& \geq 0 \\
x \geq 0, y \& \geq 0
\end{aligned}
\end{aligned}
\] \& \\
\hline Solution: \& \begin{tabular}{l}
\[
\begin{array}{ll}
Z=5 x+10 y . \& \ldots(1) \\
x+2 y \leq 120 \& \ldots(2) \\
x+y \geq 60 . \& \ldots(3) \\
x-2 y \geq 0 \& \ldots(4) \\
x \geq 0, y \geq 0 \& \ldots(5) \tag{5}
\end{array}
\] \\
First of all, let us graph the feasible region of the system of linear inequalities (2) to (5). \\
Let \(\mathrm{Z}=5 \mathrm{x}+10 \mathrm{y}\) \\
Converting inequalities to equalities
\[
\begin{equation*}
x+2 y=120 \tag{1}
\end{equation*}
\]
\begin{tabular}{|l|l|l|}
\hline X \& 0 \& 120 \\
\hline Y \& 60 \& 0 \\
\hline
\end{tabular} \\
Points are \((0,60),(120,0)\) \\
Now put \((0,0)\) in inequation (2), we find \(0 \leq 120\), which is true. \\
Therefore area lies towards the origin from this line.
\[
x+y=60
\]
\begin{tabular}{|l|l|l|}
\hline x \& 0 \& 60 \\
\hline y \& 60 \& 0 \\
\hline
\end{tabular} \\
Points are \((0,60),(60,0)\) \\
Now put (0,0) in inequation (3), we find \(0 \geq 60\), which is False. Therefore area lies away from the origin from this line.
\[
x-2 y=0
\] \\
\begin{tabular}{|l|l|l|l|}
\hline X \& 0 \& 20 \& 40 \\
\hline
\end{tabular}
\end{tabular} \& \(\frac{1}{2}\)

$\frac{1}{2}$

\hline
\end{tabular}

	The maximum value of Z on the feasible region occurs at the two corner points $C(60,30)$ and $D(120,0)$ and it is 600 in each case.	$\frac{1}{2}$
	SECTION - E (4Marks \times 3Q)	
Question 36.	$P(x)=-6 x^{2}+120 x+25000($ in $₹)$ is the total profit function of a company, where x denotes the production of the company. Based on the above information answer the following: (i)Find the profit of the company when the production is 3units. (1) (ii) Find $\mathrm{P}^{\prime}(5)$. (iii) Find the production, when the profit is maximum.	
Solution:	$\text { (i) When } \mathrm{x}=3 \text { (} \begin{align*} \mathrm{P}(3) & =-6(3)^{2}+120(3)+25000 \\ & =-54+360+25000 \\ & =₹ 25306 \end{align*}$	1
	(ii) We have, $\mathrm{P}(\mathrm{x})=-6 \mathrm{x}^{2}+120 \mathrm{x}+25000$ Differentiating equation (1) w.r.t. x $\begin{align*} P^{\prime}(x)=-12 x+120 \tag{2}\\ \therefore P^{\prime}(5)=-12(5)+120=60 \tag{1} \end{align*}$	1
	(iii) We have, $\mathrm{P}(\mathrm{x})=-6 \mathrm{x}^{2}+120 \mathrm{x}+25000$ Differentiating equation (1) w.r.t. x $\begin{equation*} P^{\prime}(x)=-12 x+120 \tag{2} \end{equation*}$ For maximum or minimum value of $\mathrm{P}(\mathrm{x}), \mathrm{P}^{\prime}(\mathrm{x})=0$ we have $\begin{aligned} -12 \mathrm{x}+120 & =0 \\ -12 \mathrm{x} & =-120 \\ \text { i.e. } \quad \mathrm{x} & =10 \end{aligned}$ Differentiating equation (2) w.r.t. x $P^{\prime \prime}(x)=-12$ Now, At $\mathrm{x}=10 \quad \mathrm{P}^{\prime}{ }^{\prime}(\mathrm{x})=-12=-\mathrm{ve}$ $\Rightarrow \mathrm{P}(\mathrm{x})$ has maximum value at $\mathrm{x}=10$	2
Question 37.	A linear differential equation is of the form $\frac{d y}{d x}+P y=Q$, where P, Q are functions of x, then such equation is known as linear differential equation. Its solution is given by $\mathrm{y} .(\mathrm{IF} .)=\int \mathrm{Q}(\mathrm{IF} .) \mathrm{dx}+\mathrm{c}, \quad \text { where I.F. (Integrating Factor) }=\mathrm{e}^{\int \mathrm{Pdx}}$ Now, suppose the given equation is $x \frac{d y}{d x}+2 y=x^{2}$ Based on the above information, answer the following questions:	

	(i)What are the values of P and Q respectively? (ii)What is the value of I.F.? (iii)Find the Solution of given equation.	
Solution:	(i) Given equation is $x \frac{d y}{d x}+2 y=x^{2}$ Dividing on both side by x, we have $\Rightarrow P=\frac{2}{x}, Q=x$	1
	$\text { (ii) } \begin{aligned} \text { I.F.(Integrating Factor) } & =\mathrm{e}^{\int \operatorname{Pdx}} \\ & =\mathrm{e}^{\int \frac{2}{\mathrm{x}} \mathrm{dx}} \\ & =\mathrm{e}^{2 \log \mathrm{x}} \\ & =\mathrm{x}^{2} \end{aligned}$	1
	(iii) Solution of given equation is $\begin{aligned} & y .(\text { IF. })=\int Q(\text { IF. }) d x+c \\ & y\left(x^{2}\right)=\int x\left(x^{2}\right) d x+c \\ & x^{2} y=\int x^{3} d x+c \\ & x^{2} y=\frac{x^{4}}{4}+c \end{aligned}$	2
Question 38.	In an office three employees Vinay, Sonia and Iqbal process incoming copies of a certain form. Vinay process 50% of the forms. Sonia processes 20% and Iqbal the remaining 30% of the forms. Vinay has an error rate of 0.06 , Sonia has an error rate of 0.04 and Iqbal has an error rate of 0.03. Based on the above information answer the following questions:	

	(i) The total probability of committing an error in processing the form. (ii) The manager of the company wants to do a quality check. During inspection he selects a form at random from the days output of processed forms. If the form selected at random has an error, the probability that the form is not processed by Vinay.	
Solution:		2
	(ii) Probability that the form is not processed by Vinay $=\mathrm{P}\left(\overline{\mathrm{E}}_{1} \mid \mathrm{A}\right)$ $\mathrm{P}\left(\overline{\mathrm{E}}_{1} \mid \mathrm{A}\right)=1-\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right)$ By Bayes' Theorem $\begin{aligned} \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}(\mathrm{E} 1) \cdot \mathrm{P}(\mathrm{~A} / \mathrm{E} 1)+\mathrm{P}(\mathrm{E} 2) \mathrm{P}(\mathrm{~A} / \mathrm{E} 2)+\mathrm{P}(\mathrm{E} 3) \mathrm{P}(\mathrm{~A} / \mathrm{E} 3)} \\ \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{\frac{5}{10}(0.06)}{0.047} \\ \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{0.03}{0.047}=\frac{30}{47} \\ \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right)= & 1-\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) \\ = & 1-\frac{30}{47}=\frac{17}{47} \end{aligned}$	2

