Class XI (Session 2024-25) Marking Scheme Subject - Physics

SECTION - A

1.	I)	10m		1		
2.	ii)	ZERO		1		
3.	ii)	60°		1		
4.	iv)	ZERO		1		
5.	iii)	10N		1		
6.	ii)	9J		1		
7.	ii)	decreases		1		
8.	ii)	decreases		1		
9.	iv)	$T\alpha R^{3/2}$		1		
10.	ZEF	RO		1		
11.	Bull	k Modules		1		
12.	Hoo	ke's law		1		
13.	8:1			1		
14.	Joul	e/kg		1		
15.	$\gamma = 3$	βα		1		
16.	(d)	(f				
17.	(d)			1		
18.	(d)			1		
			SECTION - B			
19.	ByI	PRINCIPLE OF HOMOGEN	NEITY	2		
		a = [L]		(1+1)		
		$b = [LT^{-1}]$				
20.	M n ₂	/e know that : $n_1u_1 = n_2u_2$ $n_1 \frac{u_1}{u_2} = n_1 \frac{[M_1^a L_1^b T_1^c]}{[M_2^a L_2^b T_2^c]}$		1/2		
	=	$n_1 \begin{bmatrix} \frac{M_1}{M_2} \end{bmatrix}^a \begin{bmatrix} \frac{L_1}{L_2} \end{bmatrix}^b \begin{bmatrix} \frac{T_1}{T_2} \end{bmatrix}^c$		1/2		
	SI	System New system				
	M L ₁	= 4.2 n ₂ =? $_{1} = 1 \text{ kg } M_{2} = \alpha \text{ kg}$ = 1 m L ₂ = β m = 1 s T ₂ = γ s		1/2		
	1 0	cal = 4.2 J = 4.2 kg m²s⁻² ∴ a = 1, b = 2, c =				
	A.)	$n_2 = 4.2 \left[\frac{1 \text{ kg}}{\alpha \text{ kg}}\right]^{1} \left[\frac{1 \text{ m}}{\beta \text{ m}}\right]^{2} \left[\frac{1 \text{ s}}{\gamma \text{ s}}\right]^{-2}$		1/2		
		$n_2 = 4.2\alpha^{-1}\beta^{-2}\gamma^2$		/2		
		1 cal = $4.2\alpha^{-1}\beta^{-2}\gamma^{2}$ in new system				

21.	W =	= F.S.	1		
	=	= (3i+4j+5k).(5i+4j+3k)			
	=	= 15+16+13			
	=	= 46 Joule	1		
OR					
	Recati	on between K.E. and linear Momentum.	1		
	$\mathbf{P} = \sqrt{2mE}$				
	KE of	Lighter body will be greater because KE $\alpha \frac{1}{\text{mass}}$	1		
22.	Coefficient of restitution is defined as the ratio of the magnitude of velocity of separation and				
	magnitude of velocity of approach.				
	For El	astic Collision $e = 1$			
23.	Maximum mass that can be lifted, $m = 3000 \text{ kg}$				
	Area	of cross-section of the load-carrying piston, $A = 425 \text{ cm}^2 = 425 \times 10-4 \text{m}^2$	1/2		
	The m	aximum force exerted by the load, $F = mg = 3000 \times 9.8 = 29400 N$	1/2		
	Them	aximum pressure on the load-carrying piston, $P = F/A$	1/2		
	P=6.9	917 x 105 Pa	1/2		
24.	Atroc	om temperature, $T = 270 C = 300 K$	1/2		
	Avera	ge thermal energy = $(3/2)$ kT	1/2		
	Where,				
	k is the Boltzmann constant = $1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$				
	Hence	2,			
	$(3/2)$ kT = $(3/2) \times 1.38 \times 10^{-23} \times 300$				
	On ca	lculation, we get			
	=6.21	x 10-21 J	1/2		
25.	T= 8	30N			
		50 metre			
	m= 4	4×10^{-3} kg			
			1		
	$v = \sqrt{\frac{T}{\mu}}$				
	TT 71				
	Wher	$4 \in 10^{-3}$ 0×10^{-3}	17		
	u= 1	mass per unit length = $\frac{4 \in 10^{-3}}{.50} = 8 \times 10^{-3} \text{ kg/metre}$	1/2		
	$n = \int$	$\frac{80}{8 \in 10^{-3}} = 10 \mathrm{m/s}$	1/2		
	$\sqrt{-1}$	$8 \in 10^{-3}$ - 10 m/s	/2		

27. Expression for centre of Mass

$$r = \frac{m_1 r_1 + m_2 r_2 + m_3 r_3}{m_1 + m_2 + m_3}$$

28. Moment of inertia is the sum of the product of the mass of every particle with its square of the distance from the axis of rotation. We know, kinetic energy 1

(E)
$$= \frac{1}{2} \text{mv}^2$$

3

$$Asv = wr$$

So

$$E = \frac{1}{2} m (r^2 w^2)$$
1
¹/₂

$$\Rightarrow E = \frac{1}{2} Iw^2$$

[...I=mr²]

which is required relationship between kinetic energy of rotation and moment of inertia.

29.Kepler's Laws of Planetary Motion They describe how1+1+1

1) planets move in elliptical orbits with the Sun as a focus,

2) a planet covers the same area of space in the same amount of time no matter where it is in its orbit, and

3) a planet's orbital period is proportional to the size of its orbit.

OR

Orbital velocity (V_e): Velocity of a satellite moving in orbit is called orbital velocity (V_e). Let a satellite of mass is revolving round the earth in a circular orbit at a height 'h' above the ground. Radius of the orbit =R+h where R is radius of earth. In orbit motion is " The centrifugal and centripetal forces acting on the satellite". Centrifugal force $= \frac{mV^2}{r} = \frac{mV_0^2}{R+h}$. Centripetal force is the force acting towards the centre of the circle it is provided by gravitational force between the planet and satellite. GM: F = (2) $(R+h)^2$ mV_0^2 GM $(1)=(2)\frac{\dots}{(R+h)}$ $(R+h)^{2}$ or $V_0 = \sqrt{\frac{GM}{R+h}}$ $\therefore V_0^2$ R+hWhen $h < \langle R$ then orbital velocity $V_{\rm o} = \sqrt{gR}$ is called orbital velocity. Its value is 7.92 km/sec.

30. An adiabatic process is defined as. The thermodynamic process in which there is no exchange of heat from the system to its surrounding neither during expansion nor during compression.
1+2

ANSWER

$$\begin{array}{ll} \mbox{Adiabatic process}: & PV^{\gamma} = K \\ \mbox{So,} & P = KV^{-\gamma} \\ \mbox{Work done} & W = \int PdV \\ \mbox{Or} & W = \int KV^{-\gamma}dV \\ \mbox{Or} & W = K \times \frac{V^{-\gamma+1}}{1-\gamma} \Big|_{V_1}^{V_2} \\ \mbox{Or} & W = \frac{K}{1-\gamma} \times [V_2^{-\gamma+1} - V_1^{-\gamma+1}] \\ \mbox{Or} & W = \frac{1}{1-\gamma} \times [KV_2^{-\gamma+1} - KV_1^{-\gamma+1}] \\ \mbox{Or} & W = \frac{1}{1-\gamma} \times [P_2V_2^{\gamma}V_2^{-\gamma+1} - P_1V_1^{\gamma}V_1^{-\gamma+1}] \\ \mbox{Or} & W = \frac{P_2V_2 - P_1V_1}{1-\gamma} \end{array}$$

OR

Isothermal process is a thermodynamic process in which the temperature of a system remains constant. The transfer of heat into or out of the system happens so slowly that thermal equilibrium is maintained. 1+2

```
Suppose 1 mole of gas is enclosed in isothermal container. Let P<sub>1</sub>, V<sub>1</sub>, T be
initial pressure, volumes and temperature. Let expand to volume V<sub>2</sub> &
pressure reduces to P<sub>2</sub> & temperature remain constant. Then, work done is
given by
W = \int dW
W = \int_{V_1}^{V_2} P dV
as PV = RT (n = mole)
P = \frac{RT}{V}
W = \int_{V_1}^{V_2} \frac{RT}{V} dV
W = RT \int_{V_1}^{V_2} \frac{dV}{V}
= RT [InV]_{V_1}^{V_2}
= RT [InV_2 - InV_1]
W = RTIn\frac{V_2}{V_1}
W = 2.303RTlog_{10}\frac{V_2}{V_1}
```

1

1

1

31. (I) Let H be the maximum height reached by the projectile in time t_1 For vertical motion, $2\frac{1}{2}$ The initial velocity = $u \sin \theta$ The final velocity = 0Acceleration = -g $\therefore u \sin g, v^2 = uw^2 + 2as$ $0 = u^2 \sin^2 \theta - 2gH$ $2gH = u^2 \sin^2 \theta$ $H = \frac{u^2 \sin^2 \sigma}{2g}$

(ii) Let t_1 be the time taken by the projectile to reach the maximum height H. For vertical motion, $2\frac{1}{2}$

initial velocity = $u \sin \theta$

Final velocity at the maximum height = 0

```
Acceleration a = -g
```

```
Using the equation v = u + at_1
```

 $0 = u \sin \theta - g t_1$

 $gt_1 = u \sin \theta$

$$t_1 = \frac{u \sin \theta}{g}$$

Let t_2 be the time of descent.

But $t_1 = t_2$

i.e. time of ascent = time of descent.

$$\therefore \text{ Time of flight } T = t_1 + t_2 = 2t_1$$
$$\therefore T = \frac{2u \sin \sigma}{g} \text{ OR}$$

The triangle law for vector addition states that if two vectors are represented by two sides of a triangle taken in order, then their vector sum is represented by the third side of the triangle taken in the opposite direction.

4

(1) Magnitude of resultant vector In $\triangle ABN$, $\cos \theta = \frac{AN}{B}$. $AN = B\cos \theta$ $\sin \theta = \frac{BN}{B}$ $\therefore BN = B\sin \theta$ In $\triangle OBN$, we have $OB^2 = ON^2 + BN^2$ $R^2 = (A + B\cos \theta)^2 + (B\sin \theta)^2$ $R^2 = A^2 + B^2(\cos^2 \theta + \sin^2 \theta) + 2AB\cos \theta$ $R = \sqrt{A^2 + B^2} + 2AB\cos \theta$

32. Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy.

To prove Bernoulli's theorem, consider a fluid of negligible viscosity moving with laminar flow, as shown in Figure.

Let the velocity, pressure and area of the fluid column be p1, v1 and A1 at Q and p2, v2 and A2 at R. Let the

volume bounded by Q and R move to S and T where QS = L1, and RT = L2.

If the fluid is incompressible

The work done by the pressure difference per unit volume = gain in kinetic energy per unit volume + gain in potential energy per unit volume. Now:

$$A_1L_1 = A_2L_2$$

Work done is given by:

$$\begin{split} W &= F \times d = p \times volume \\ \Rightarrow W_{net} &= p_1 - p_2 \\ \Rightarrow K. E &= \frac{1}{2}mv^2 = \frac{1}{2}V\rho v^2 = \frac{1}{2}\rho v^2(\because V = 1) \\ \Rightarrow K. E_{gained} &= \frac{1}{2}\rho(v_2{}^2 - v_1{}^2) \\ P_1 &+ \frac{1}{2}\rho v_1{}^2 + \rho gh_1 = P_2 + \frac{1}{2}\rho v_2{}^2 + \rho gh_2 \\ \therefore P &+ \frac{1}{2}\rho v^2 + \rho gh = const. \end{split}$$

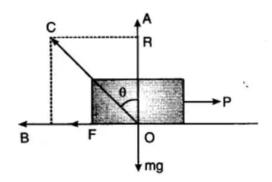
OR

Newton's law of cooling states that the rate at which an object cools is proportional to the difference in temperature between the object and the object's surroundings, Proof/Derivation 1 + 4

33. Limiting friction is described as the friction created when two static surfaces come into contact with each other 1

LAWS:

- The direction of limiting friction force is always opposite the direction of motion. 1) 1
- It always acts tangential to the two surfaces. 2)
- It is dependent on the material and the nature of the surfaces in contact. 3)
- 4) It is independent of the shape and area.


1

1

1

1

1

Relation:

In
$$\triangle AOC$$
 $\tan \theta = \frac{AC}{OA} = \frac{OB}{OA} = \frac{F}{R} = \mu$ 2
Hence $\mu = \tan \theta$ 1

Coefficient of static friction: $\mu = \tan(\theta)$, where μ is the coefficient of friction and θ is the angle

34. i) (d) 5

- ii) (a) He 1
- iii) The number of independent ways in which a molecule of gas can move is called the degree of freedom.

OR

The law of equipartition of energy states that "For a system which is in thermal equilibrium, its total energy is divided equally among the degree of freedom." 2

- 35. I) (d) Restoring Force
 - ii) (a) Periodic Motion
 - iii) Simple harmonic motion is defined as a periodic motion of a point along a straight line, such that its acceleration is always towards a fixed point in that line and is proportional to its distance from that point.

OR

Seconds pendulum: a pendulum requiring exactly one second for each swing in either direction or two seconds for a complete vibration and having a length between centres of suspension and oscillation of 99.353 centimetre 2

2

1

1

1