| | Marking Schem | ne IX Mat | hs 2023-24 | 4 (हिन्दी) म | ाध्यम) | | |----------|--------------------------|-----------------|------------------|------------------|--------------|-------| | Q.NO. | EXP | | WER /VALUE | POINTS | | MARKS | | | | | CTION-A | | | | | 1 | दो परिमेय संख्याओं के | | | | | | | SOLUTION | (C) अपरिमित रूप से | अनेक परिमेय | संख्याएँ हैं | | | 1 | | | एक त्रिभुज के कोणों व | न अनुपात 2 | : 4 : 3 है। त्रि | भुज का सबसे | छोटा कोण | | | 2 | है। | | | | | | | SOLUTION | (B) 40° | | | | | 1 | | 3 | निम्न में से कौन त्रिभु | जों की सर्वांग | प्तमता की कसौर्ट | ी नहीं है? | | | | SOLUTION | (C) SSA | | | | | 1 | | | एक त्रिभुज की दो भुज | ाओं की लंबाई | 5 सेमी और 1 | .5 सेमी है। त्रि | भुज की | | | 4 | तीसरी भुजा की लंबाई | नहीं हो सकत | ी | | | | | SOLUTION | (D) 3.4 cm | | | | | 1 | | 5 | एक चतुर्भुज के तीन व | नेण 75°, 90° ३ | और 75° हैं। चौथ | ा कोण है | | | | SOLUTION | D) 120° | | | | | 1 | | | एक वृत्त की समान ज | ीवाएँ केंद्र पर | समान कोण ब | नाती (या सर्वां | गसम वृत्तों) | | | 6. |) है T/F) | | | | | | | SOLUTION | Т | | | | | 1 | | | एक समकोण त्रिभुज व | न आधार 8 र | नेमी और कर्ण 1 | 0 सेमी है। इस | का क्षेत्रफल | | | | होगा | | | | | | | 7. | | | | | | | | SOLUTION | (A) 24 cm ² | | | | | | | | एक शंकु में, यदि त्रिज्य | ग आधी कर व | दी जाए और ऊंच | गई दोगुनी कर | दी जाए, तो | | | 8. | आयतन होगा | | | | | | | SOLUTION | C) आधा | | | | | 1 | | 9. | वर्ग 130-150 का वर्ग | -चिह्न है | | | | | | SOLUTION | (C) 140 | | | | | 1 | | | बारंबारता बंटन | | | | | | | | वर्ग अन्तराल | 5-10 | 10-15 | 15-25 | 25-45 | | | | बारंबारता | 6 | 12 | 10 | 8 | | | 10. | का एक आयत चित्र खं | ोंचने के लिए, | वर्ग 25-45 की | समायोजित बा | रंबारता है: | | | SOLUTION | (D) 2 | | | | | 1 | | 11. | सबसे छोटी प्राकृत संख्या है | | |--------------|---|---| | SOLUTION | (B) 1 | 1 | | 12. | $2 - x^2 + x^3$ में x^2 का गुणांक होगा | | | SOLUTION | (A) -1 | 1 | | 13. | $x = 0$ पर बहुपद $5x - 4x^2 + 3$ का मान ज्ञात कीजिए | | | SOLUTION | (D) 3 | | | | एक शंकु का कुल पृष्ठीय क्षेत्रफल ,जिसकी त्रिज्या $\frac{r}{2}$ और तिर्यक ऊंचाई $2l$ है, | | | | होगा: | | | 14. | (B) $\pi r (l + \frac{r}{4})$ | | | SOLUTION | त्रिभुज ABC में, BC = AB और ∠B=80° है, तब ∠A बराबर है: | | | 15. SOLUTION | (C) 50° | 1 | | 16. | चतुर्भुज के सभी आंतरिक कोणों का योग है | | | SOLUTION | 360 ⁰ | 1 | | | ABCD एक चक्रीय चतुर्भुज है जिसमें AB इसके परिगत वृत्त का व्यास है और | | | | ∠ADC=140°, तो ∠BAC बराबर है: | | | 17. | (D) 700 | | | SOLUTION | (B) 50° | 1 | | 18. | एक ही वृत्तखंड में बने कोणहोते हैं। | | | SOLUTION | बराबर | 1 | | | अभिकथन (A) अगर $\sqrt{2}$ =1.414 , $\sqrt{3}$ =1.732 फिर $\sqrt{5}$ = $\sqrt{2}$ + $\sqrt{3}$ | | | | तर्क(R) धनात्मक (positive number) संख्या का वर्ग मूल हमेशा मौजूद होता | | | | है | | | 19. | ₹ | | | SOLUTION | D) A असत्य है लेकिन R सत्य है | 1 | | SOLUTION | अभिकथन (A) किसी वृत्त की जीवा, जो उसकी त्रिज्या से दोगुनी लंबी होती है, | 1 | | | वृत्त का व्यास होती है। | | | | | | | 20. | तर्क (R) किसी वृत्त की सबसे लंबी जीवा वृत्त का व्यास होती है | | | | A) A और R दोनों सत्य हैं और R, A की सही व्याख्या है। | | | SOLUTION | SECTION -B | 1 | | | | | | 21 | 3 और 4 के बीच छह परिमेय संख्याएँ ज्ञात कीजिए। | | |----------|--|---| | | | | | | हम जानते हैं कि | | | SOLUTION | $3=3 imes rac{7}{7} = rac{21}{7}$ 3117 $4=4 imes rac{7}{7} = rac{28}{7}$ | 1 | | | इसलिए, 3 और 4 के बीच छह परिमेय संख्याएँ 22, 23, 24, 25, 26, 27 7, 7, 7, 7, 7, 7 | | | 22 | सरल कीजिए (3 + √3)(2 + √ 2) | 1 | | 22. | $= 3 (2 + \sqrt{2}) + \sqrt{3} (2 + \sqrt{2})$ | | | SOLUTION | | 1 | | BOLCTION | $= 6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$ | 1 | | | OR | | | | सरल कीजिये : $(125)^{ rac{-1}{3}}$ | | | | | | | SOLUTION | $(125)^{\frac{-1}{3}} = (5 \times 5 \times 5)^{\frac{-1}{3}} = (5^3)^{\frac{-1}{3}}$ | 1 | | | $=5^{-1}=\frac{1}{5}$ | 1 | | 23. | 1/(2+ $\sqrt{3}$) के हर का परिमेयकरण कीजिये | | | | $\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$ | | | | $=\frac{2-\sqrt{3}}{(2)^2-(\sqrt{3})^2}$ | | | SOLUTION | | 1 | | | $=\frac{2-\sqrt{3}}{4-3}$ | | | | $=\frac{2-\sqrt{3}}{1}$ | 1 | | 24. | 103 × 107 का मान ज्ञात कीजिए | | | | 103×107= (100+3)×(100+7) | | | | यहाँ, $x = 100$, $a = 3$, $b = 7$ | | | SOLUTION | सर्वसमिका, $[(x+a)(x+b) = x^2 + (a+b)x + ab$ द्वारा | 1 | | | $103 \times 107 = (100 + 3) \times (100 + 7)$ | | |----------|---|--------------| | | (100)2 (2.7)100 (2.7) | | | | $= (100)^2 + (3+7)100 + (3\times7)$
= 10000+1000+21 | | | | = 10000+1000+21
= 110211 | 1 | | 25. | k का मान ज्ञात कीजिए, यदि $x - 1$, $p(x)$ का एक गुणनखंड है $p(x) = x^2 + x + k$ | - | | | यदि $x - 1, p(x)$ का एक गुणनखंड है तो | | | | p(1) = 0 | | | | गुणनखंड प्रमेय द्वारा | | | SOLUTION | $\Rightarrow (1)^2 + (1) + k = 0$ | 1 | | | 1+1+k=0 | | | | $\Rightarrow 2+k=0$ | | | | $\Rightarrow k = -2$ OR | 1 | | | गुणनखंड प्रमेय का उपयोग करके ज्ञात कीजिए कि x -3, बहुपद x^3 -4 x^2 + x +6 का | | | | गुणाबा अनय या अयाग यार्य सात याजिश वर्ग ४-3, बहुन्य ४ -4४ +४+० या | | | | एक गुणनखंड है या नहीं ? | | | | x-3 =0 लेने पर | | | | x = 3 | | | SOLUTION | x=3 बहुपद में रखने पर (3) ³ -4(3) ² +3+6 | 1 | | | = 27-36+3+6= 0 | | | | अतः गुणनखंड प्रमेय द्वारा x-3, बह्पद x ³ -4x ² +x+6 का एक गुणनखंड है। | 1 | | | SECTION-C | | | 26. | गुणनखण्ड कीजिए $12x^2 - 7x + 1$ | | | | मध्य पद को विभाजित करने की विधि का उपयोग करते हुए, | | | | हमें एक संख्या ज्ञात करनी है जिसका योग = -7 है | | | | और गुणनफल =1×12 = 12 | | | | हमें संख्या के रूप में -3 और -4 मिलते हैं [-3+-4=-7 और -3×-4 = 12] | | | | $12x^2-7x+1$ | | | SOLUTION | $=12x^2-4x-3x+1$ | 1 | | | =4x(3x-1)-1(3x-1) | 1 | | | =(4x-1)(3x-1) | 1 | | | एक अर्द्धगोलीय कटोरे की त्रिज्या 3.5 सेमी है। इसमें पानी की मात्रा कितनी | | | 27. | होगी? | | | | R = 3.5 CM | | |----------|--|-----| | | ा । अ.उ. टारा
गोले का आयतन =4/3(∏R ³) | | | | गाल का जायतन <i>-4/3(IIK)</i> | | | | अर्धगोले का आयतन =2/3(∏R ³) | 1 | | | =(2/3)x3.14x3.5x3.5x3.5 | 1 | | | (2/3)/3.14/3.3/3.3/3.3
 =89.75 सेमी ³ | 1 | | | -03.73 (1011 | 1 | | SOLUTION | OR | | | | | | | | एक शंकु का कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिए, यदि इसकी तिर्यक ऊँचाई 21 | | | | मीटर है और इसके आधार का व्यास 24 मीटर है। | | | | शंकु की तिर्यक ऊंचाई (I)=21 मी | | | | शंकु के आधार का व्यास =24 मी | | | SOLUTION | त्रिज्या (r)=24/2=12 मीटर | 1 | | BOLUTION | कुल पृष्ठीय क्षेत्रफल =πr(l+r)=22/7×12(21+12)मी ² | 1 | | | 3 (1) 2 (1) (1) (1) (1) (1) (1) (1 | 1 | | | =22/7×12×33 मी2=8712/7मी2=1244.57 मी ² | 1 | | 28. | गुणनखण्ड कीजिए 27Y³ + 125Z³ | | | | $27Y^3 + 125Z^3 = (3Y)^3 + (5Z)^3$ | | | | हम जानते हे की, $x^3+y^3=(x+y)(x^2-xy+y^2)$ | | | | $=27Y^3+125Z^3$ | | | | $(3Y)^3 + (5Z)^3$ | | | SOLUTION | $=(3y)^3+(5z)^3$ | 1 | | | $= (3Y+5Z)[(3Y)^2-(3Y)(5Z)+(5Z)^2]$ | | | | $= (3Y+5Z)(9Y^2-15YZ+25Z^2)$ | 2 | | 29 | समीकरण $\mathbf{x}+2\mathbf{y}=6$ के चार भिन्न हल ज्ञात कीजिए। | | | | x + 2y = 6 $y = 6$ | | | | X=6-2Y
Y=0 रखने पर | | | | Y=0 रखन पर
X=6 | | | | पहला हल (X=6, Y=0) | | | | Y=1 रखने पर | | | | $X=6-2\times1$ | | | | X=0-2X1 $X=4$ | | | | दूसरा हल (X=4,Y=1) | 4.5 | | | | 1.5 | | | Y=2 रखने पर | 1.5 | | | X=6-2x2 | | |----------|---|-----| | | X=2 | | | | तीसरा हल (X=2,Y=2) | | | | Y=3 रखने पर | | | | X=6-2x3 | | | | X=0 | | | | चौथा हल (X=0,Y=3) | | | | ${\bf k}$ का मान ज्ञात कीजिए, यदि ${\bf x}={\bf 2},{\bf y}={\bf 1}$ समीकरण ${\bf 2x}+{\bf 3y}={\bf k}$ का एक हल | | | 30 | है। | | | | 2x + 3y = k. | | | | x = 2, y = 1 समीकरण में रखने पर | | | SOLUTION | 2x2+3x1=K | 2 | | | 4+3=K | | | | K=7 | 1 | | 31. | गुणनखण्ड कीजिए 8X³ + 27Y³ + 36X²Y + 54XY² | | | | व्यंजक $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$ | | | | के रूप में लिखा जा सकता है | | | SOLUTION | $(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$ | 1 | | | | | | | $=(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$ | | | | $(x+y)^3 = x^3 + y^3 + 3xy (x+y)$ $(2X)^3 + (3Y)^3 + 3(2X)(3Y)(2X+3Y)$ | 1 | | | $(2X)^3 + (3Y)^3 + 3(2X)(3Y)(2X + 3Y)$ | | | | $=(2X+3Y)^3$ | | | | =(2X+3Y)(2X+3Y)(2X+3Y) | 1 | | | अथवा | | | | गुणनखण्ड कीजिए 8X³ + Y³ + 27Z³ – 18XYZ | | | | $8X^3 + Y^3 + 27Z^3 - 18XYZ$ | | | | के रूप में लिखा जा सकता है | | | | | | | SOLUTION | $(2X)^3 + Y^3 + (3Z)^3 - 3(2X)(Y)(3Z)$ | 1 | | BOLUTION | $x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$ | 1 1 | | | | | | | = $(2X+Y+3Z)((2X)^2+Y^2+(3Z)^2-2XY-Y(3Z)-3Z(2X))$ | 1 | | | | 1 | | | $(2X+Y+3Z)(4X^2+Y^2+9Z^2-2XY-3YZ-6ZX)$ | | | | | | | | | | | | यदि एक बिंदु C दो बिंदुओं A और B के बीच इस प्रकार स्थित है कि AC = | | |----------|---|---| | | BC है, तो सिद्ध कीजिए AC = ½ AB चित्र बनाकर समझाइए। | | | 32. | 20 () (ii 1(i)) 110 121 | | | | C | | | SOLUTION | A | 1 | | | दिया गया है कि , AC = BC | | | | अब दोनों तरफ AC को जोड़ रहे हैं | | | | L.H.S+AC = R.H.S+AC | 2 | | | AC+AC = BC+AC | | | | 2AC = BC+AC
 हम जानते हैं कि, BC+AC = AB (क्योंकि यह रेखाखंड AB के साथ संपाती है) | | | | ∴ 2 AC = AB (यदि बराबर को बराबर में जोड़ा जाए, तो पूर्ण बराबर होते हैं।) | | | | $\Rightarrow AC = (\frac{1}{2}) AB.$ | | | | 0 ' ' " " " 0 ' 0 " 0 " 0 " 1 | 2 | | | चित्र में रेखाएँ XY और MN O पर प्रतिच्छेद करती हैं। यदि ∠POY = 90° और | | | | a:b=2:3 है, तो c ज्ञात कीजिए। | | | | M a | | | | X C Y | | | 33. | N | | | | हम जानते हैं कि रैखिक युग्मों का योग हमेशा 180° के बराबर होता है | | | | इसलिए, ∠POY +a +b = 180° | | | SOLUTON | | 1 | | |
 जैसा कि प्रश्न में दिया गया है ∠POY = 90° का मान रखने पर, | | | | $a+b=90^{\circ}$ | | | | | | | | दिया हुआ है : a:b=2:3 | 1 | | | मान लीजिए a =2x है और b =3x है | | | | $\therefore 2x + 3x = 90^{\circ}$ | | | | इसे हल करने पर हमें प्राप्त होता है | | | | $5x = 90^{\circ}$ $5x = 18^{\circ}$ | | | | So, $x = 18^{\circ}$ | 1 | | | $\therefore a = 2 \times 18^{\circ} = 36^{\circ}$ | | | | इसी प्रकार, b की गणना की जा सकती है और मान होगा | 1 | | | $b = 3 \times 18^{\circ} = 54^{\circ}$ | | |----------|--|---| | | आरेख से, b+c भी एक सीधा कोण बनाता है, | | | | इसलिए, b+c = 180° | | | | $c+54^{\circ} = 180^{\circ}$ | | | | \therefore c = 126° | 1 | | | चित्र में यदि AB CD, ∠APQ = 50° और ∠PRD = 127°, x और y ज्ञात | 1 | | | कीजिए। | | | | 50° y 127° | | | | C Q R D | | | | | | | OR 33 | | | | | चित्र से ∠APQ = ∠PQR (अंतः एकांतर कोण) | | | | $\angle APQ = 50^{\circ}$ और $\angle PQR = x$ का मान रखने पर | | | SOLUTION | $x = 50^{\circ}$ | 1 | | BOLCTION | भी | | | | ∠APR = ∠PRD (अंतःएकांतर कोण) | | | | Or, ∠APR = 127° (जैसा कि दिया गया है कि ∠PRD = 127°) | | | | हम वह जानते हैं ∠APR =∠APQ+∠QPR | 2 | | | अब, ∠QPR = y और ∠APR = 127° का मान रखने पर, | | | | हम पाते हैं | | | | $127^{\circ} = 50^{\circ} + y$ | | | | Or, $y = 77^{\circ}$ | | | | इस प्रकार, x और y के मानों की गणना इस प्रकार की जाती है: | | | | x = 50° और y = 77° | 2 | | | एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएँ 18 सेमी और 10 सेमी | ۷ | | 34. | हैं तथा परिमाप 42 सेमी है। | | | | | | | | त्रिभुज की तीसरी भुजा को "x" मान लें। | | | | अब, त्रिभुज की तीन भुजाएँ 18 सेमी, 10 सेमी और "x" सेमी हैं | | | | दिया गया है कि त्रिभुज का परिमाप = 42 सेमी | | | SOLUTION | इसलिए, x = 42-(18+10) सेमी = 14 सेमी | | | | त्रिभ्ज का अर्ध परिमाप = 42/2 = 21 सेमी | 1 | |----------|--|---| | | हीरोन के सूत्र का प्रयोग करने पर, | | | | त्रिभ्ज का क्षेत्रफल= $\sqrt{s(s-a)(s-b)(s-c)}$ | 1 | | | 3 V V V V V V V V V V | | | | . | | | | = v[21(21-18)(21-10)(21-14)] सेमी ² | | | | (524 2 44 71 2 12 2 | 1 | | | = v[21×3×11×7] सेमी ² | | | | = 21√11 सेमी² | 1 | | | | | | | एक लम्ब वृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल ज्ञात कीजिए जिसकी तिर्यक ऊँचाई 10 | | | 34 OR | सेमी और आधार की त्रिज्या 7 सेमी है। | | | | | | | | दिया गया है : /=10 सेमी ,त्रिज्या r = 7 सेमी | 1 | | | | ' | | | | | | | लम्बवृत्तीय शंकु का वक्र पृष्ठीय क्षेत्रफल = $\pi r l$ | 1 | | | | 2 | | | $= 22/7x7 \times 10$ | 1 | | | = 220 सेमी ² | | | SOLUTION | | | | | चतुर्भुज ABCD, AC = AD और AB, ∠A को समद्विभाजित करता है दिखाइए | | | | कि △ABC △ABD. आप BC और BD के बारे में क्या कह सकते हैं? | | | | C | | | | | | | | | | | | | | | | A D | | | | $A \longrightarrow B$ | | | | | | | | | | | | | | | 35. | D | | | | दिया गया है : AC = AD और रेखाखंड AB , ∠A को समद्विभाजित करती है। | | | SOLUTION | सिद्ध करना है : $\Delta ABC \cong \Delta ABD$ | 2 | | | प्रमाण: | | |----------|---|---| | | त्रिभ्जों ΔABC और ΔABD में | | | | (i) AC = AD (दिया गया है) | | | | (ii) AB = AB (उभयनिष्ठ) | | | | (iii) ∠CAB = ∠DAB (क्योंकि AB कोण A का समद्विभाजक है) | | | | इसलिए, $\Delta ABC\cong \Delta ABD$. (SAS सर्वांगसमता कसौटी के अनुसार) | | | | | 2 | | | प्रश्न के दूसरे भाग के लिए, BC =BD हैं। (C.P.C.T के नियम के अनुसार) | 1 | | | विज्ञापन के लिए फ्लाईओवर की त्रिकोणीय साइड की दीवारों का उपयोग | | | | किया गया है। दीवारों की भुजाएँ 122 मीटर, 22 मीटर और 120 मीटर हैं। | | | | विज्ञापनों से प्रति वर्ष 5000 रुपये प्रति m² की कमाई होती है। उपरोक्त | | | | जानकारी और दी गई आकृति के आधार पर निम्नलिखित प्रश्नों का उत्तर दें | | | | (i) दीवार का परिमाप ज्ञात कीजिए I | | | | (ii) हीरोन का सूत्र लिखिए। | | | | (iii) त्रिभुजाकार दीवार का क्षेत्रफल ज्ञात कीजिए l | | | | अथवा | | | | यदि कंपनी 1680 वर्ग मीटर क्षेत्रफल वाली एक दीवार को 3 महीने के लिए | | | | किराए पर लेती है, तो उसे कितना किराया देना होगा? | | | 36. | | | | | (i) त्रिभुज ABC की भुजाएँ क्रमशः 122 मीटर, 22 मीटर और 120 मीटर हैं | | | | अब, परिमाप (122+22+120) = 264 मीटर होगा | | | SOLUTION | | 1 | | | (ii) Δ का क्षे $\sigma = \sqrt{s(s-a)(s-b)(s-c)}$ जहाँ $s = (a+b+c)/2$ | 2 | | | (i) अर्द्ध परिमाप (s) = 264/2 = 132 मी. | | | | हीरोन के सूत्र का प्रयोग करने पर, | | | | त्रिभुज का क्षेत्रफल = $\sqrt{s(s-a)(s-b)(s-c)}$ | | | | $=\sqrt{132(132-122)(132-22)(132-120)}$ | | | | $=\sqrt{132\times10\times110\times12}$ | | | | $=1320 \text{ m}^2$ | 2 | | | OR | 2 | | | हम जानते हैं कि प्रति वर्ष विज्ञापन का किराया = 5000 प्रति वर्ग मीटर | | |----------|--|---| | | ∴ एक दीवार का 3 महीने का किराया = रु. (1680×5000×3)/12 | | | | = vo. 2100000 | | | | आकृति देखकर निम्नलिखित प्रश्नों के उत्तर दें । | | | | (i) B के निर्देशांक। | | | | (ii) निर्देशांक (-3, -5) द्वारा पहचाना गया बिंदु। | | | | (iii) बिंदु D का भुज तथा बिंदु H की कोटि ज्ञात कीजिए l | | | | अथवा | | | | आकृति में रेखाखंड BD का X-अक्ष के साथ बनने वाले आयत का क्षेत्रफल | | | 37. | ज्ञात कीजिए । | | | | B का निर्देशांक (−5, 2) है। | | | SOLUTION | | 1 | | | निर्देशांक (-3, -5) द्वारा पहचाना गया बिंदु E है। | _ | | | बिंदु D का भुज 6 तथा बिंदु H की कोटि -3 है। | 1 | | | विषु प्रया मुठा ७ (वि. विषु । या या। ८ -५ हा | 2 | | | OR | | | | आयत का क्षेत्रफल= लo × चौo= 11×2=22 वर्ग इकाई | 2 | | | कक्षा IX के एक विशेष खंड में, 40 छात्रों से उनके जन्म के महीनों के बारे में | | | | पूछा गया था और प्राप्त आंकड़ों के लिए निम्नलिखित ग्राफ तैयार किया गया | | | | था। दिए गए दंड आलेख को देखें और निम्नलिखित प्रश्नों के उत्तर दें: | | | | Jan. Jan. Jan. Jan. Jan. Heb. Apr. Aug. Oct. Number of Students Jan. Aug. Oct. Nov. Dec. | | | 38. | (i) नवंबर के महीने में कितने विद्यार्थियों का जन्म हुआ? | | | | T | |--|--| | (ii) किस महीने में सबसे अधिक विद्यार्थियों का जन्म हुआ? | | | (iii) उन महीनों के नाम बताइए जिनमें 4 विद्यार्थियों का जन्म हुआ। | | | अथवा | | | मई से अगस्त के बीच पैदा हए छात्रों की कुल संख्या ज्ञात कीजिए। | | | , , , , , , , , , , , , , , , , , , , | | | (i) नवंबर के महीने में 4 छात्रों का जन्म हुआ था | 1 | | (ii) अगस्त में सबसे अधिक विद्यार्थियों का जन्म हुआ | 1 | | (iii) फरवरी, अक्टूबर, नवंबर, दिसंबर | | | | 2 | | OR | | | मई से अगस्त तक कुल छात्र = 5+1+2+6 = 14 छात्र | | | | 2 | | | | | | | | Marking Scheme IX Maths 2023-24 (English Medium) | | | EXPECTED ANSWER /VALUE POINTS | MARK | | SECTION A | S | | | | | | 1 | | | 1 | | | | | | 1 | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1 | | | | | | | | | 1 | | | 1 | | length of the third side of the triangle cannot be | | | (D) 3.4 cm | | | Three angles of a quadrilateral are 75°, 90° and 75°. The fourth | | | angle is | | | D) 120° | 1 | | | (iii) उन महीनों के नाम बताइए जिनमें 4 विद्यार्थियों का जन्म हुआ। अथवा मई से अगस्त के बीच पैदा हुए छात्रों की कुल संख्या ज्ञात कीजिए। (i) नवंबर के महीने में 4 छात्रों का जन्म हुआ था (ii) अगस्त में सबसे अधिक विद्यार्थियों का जन्म हुआ (iii) फरवरी, अक्टूबर, नवंबर, दिसंबर OR मई से अगस्त तक कुल छात्र = 5+1+2+6 = 14 छात्र EXPECTED ANSWER /VALUE POINTS SECTION -A Between two rational numbers (C) there are infinitely many rational numbers Angles of a triangle are in the ratio 2 : 4 : 3. The smallest angle of the triangle is (B) 40° Which of the following is not a criterion for congruence of triangles? (C) SSA Two sides of a triangle are of lengths 5 cm and 1.5 cm. The length of the third side of the triangle cannot be (D) 3.4 cm Three angles of a quadrilateral are 75°, 90° and 75°. The fourth angle is | | 6 | Equal chords of a angles at the centr | - | of congrue | nt circles) su | ıbtend equal | | |----------|--|--------------|--------------------|------------------------------|---------------------|---| | SOLUTION | ungres at the contr | (1/1) | TRUE | | | 1 | | 7 | The base of a righ | t triangle | | l hypotenuse | e is 10 cm. Its | | | | area will be | 8 | | <i>.</i> . | | | | SOLUTION | (A) 24 cm ² | | | | | 1 | | 8 | In a cone, if radius will be | s is halved | and height | is doubled, | the volume | | | SOLUTION | (C) halved | | | | | 1 | | 9 | The class-mark of the class 130-150 is : | | | | | | | SOLUTION | (C) 140 | | | 1 | | | | 10 | To draw a histogra | am to repi | resent the fo | ollowing free | quency | | | | Class Interval | 5-10 | 10-15 | 15-25 | 25-45 | | | | Frequency | 6 | 12 | 10 | 8 | | | | The adjusted frequency | uency for | the class 25 | -45 is: | | | | SOLUTION | (D) 2 | | | | | 1 | | 11 | The smallest natur | al numbe | er is : | | | | | SOLUTION | (B) 1 | | | | | 1 | | 12 | The coefficients of | $f X^2 in 2$ | $2-X^2+X^3$ | | | | | SOLUTION | (A) -1 | | | | | 1 | | 13 | Find the value of | the polyn | omial 52 | $X-4X^2+3$ | at: x = 0 | | | SOLUTION | (D) 3 | | | | | 1 | | 14 | The total surface | area of a o | cone whose | radius is $\frac{r}{2}$ a | nd slant | | | | height 2 <i>l</i> is: | | | | | | | SOLUTION | (B) $\pi r(l + \frac{r}{4})$ | | | | | 1 | | 15 | In triangle ABC, | BC = AB | and $\angle B = 8$ | 80°. Then ∠A | l is equal to: | | | SOLUTION | (C) 50° | | | | _ | 1 | | 16 | sum of all the inte | riors angl | e of quadri | lateral is | - | | | SOLUTION | 360° | | | | | | | 17 | ABCD is a cyclic q | uadrilate | ral such tha | t AB is a dia | ameter of a | | | | circle circumscrib | ing it and | $\angle ADC = 1$ | 40° , then ∠ <i>I</i> | <i>BAC</i> is equal | | | | to: | | | | | | | SOLUTION | (B) 50° | | | | | 1 | | 18 | Angles in the same | segment | of a circle a | re | ••••• | | | SOLUTION | equal | 1 | |----------|---|---| | 19 | Assertion (A) if $\sqrt{2}=1.414$, $\sqrt{3}=1.732$ then $\sqrt{5}=\sqrt{2}+\sqrt{3}$ | | | | Reason (R) Square root of positive number always exists. | | | SOLUTION | A is false but R is true | 1 | | 20 | Assertion (A) A chord of a circle, which is twice as long as its | | | | radius, is a diameter of the circle. | | | | Reason (R) The longest chord of a circle is a diameter of the | | | | circle | | | SOLUTION | Both A and R are true and R is the correct explanation of A. | 1 | | | | | | | | | ## SECTION -B | Q.NO. | EXPECTED ANSWER /VALUE POINTS | MARKS | |----------|--|-------| | 21 | Find six rational numbers between 3 and 4. | | | | We know that $3= 3 \times \frac{7}{7} = \frac{21}{7}$, $4= 4 \times \frac{7}{7} = \frac{28}{7}$ | | | SOLUTION | | 1 | | | Hence, six rational numbers between 3 and 4 $\frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}$ | 1 | | 22 | Simplify $(3 + \sqrt{3})(2 + \sqrt{2})$ | 1 | | SOLUTION | $= (3 (2 + \sqrt{2})) + (\sqrt{3} (2 + \sqrt{2}))$ | 1 | | | $= 6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$ | 1 | | | OR | | | | Simplify: $(125)^{\frac{-1}{3}}$ | | | SOLUTION | $(125)^{\frac{-1}{3}} = (5 \times 5 \times 5)^{\frac{-1}{3}} = (5^3)^{\frac{-1}{3}}$ | 1 | | | $=5^{-1}=\frac{1}{5}$ | 1 | | | Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$ | | | 23 | | | | SOLUTION | $\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{2-\sqrt{3}}{(2)2-(\sqrt{3})2}$ | 1 | | | $=\frac{2-\sqrt{3}}{4-3}=\frac{2-\sqrt{3}}{1}$ | | |----------|--|---| | | 4–3 1 | 1 | | 24 | Evaluate 103×107 | | | | 102 107 (100 2) (100 7) | | | | $103 \times 107 = (100 + 3) \times (100 + 7)$ | | | | Here, $x = 100$, $a = 3$, $b = 7$ | | | SOLUTION | Using identity, $[(x+a)(x+b) = x^2 + (a+b)x + ab$ | 1 | | | We get, $103 \times 107 = (100+3) \times (100+7)$
= $(100)^2 + (3+7)100 + (3\times7)$ | | | | $= (100) + (3+7)100 + (3\times7)$
= $10000 + 1000 + 21$ | | | | = 110211 | 1 | | | Find the value of k, if $x - 1$ is a factor of $p(x)$, $p(x) = x^2 + x + k$ | | | 25 | | | | | If x-1 is a factor of $p(x)$, then $p(1) = 0$ | | | | By Factor Theorem | | | SOLUTION | $\Rightarrow (1)^2 + (1) + k = 0$ | 1 | | | 1+1+k=0 | | | | $\Rightarrow 2+k=0$ | | | | \Rightarrow k = -2 | 1 | | | OR Use the Factor Theorem to determine whether x-3 is a factor | | | | | | | | of polynomial x^3-4x^2+x+6 ? | | | | Take x-3 =0 | | | | $\Rightarrow x = 3$ | | | SOLUTION | putting $x=3$ in given polynomial $(3)^3-4(3)^2+3+6$ | 1 | | | = 27-36+3+6= 0 | | | | Therefore by factor theorem x-3 is a factor of polynomial | | | | x^3-4x^2+x+6 | 1 | | | SECTION -C | | | | Factorise: $12x^2 - 7x + 1$ | | | 26 | | | | | Using the splitting the middle term method, | | | ~~~ | We have to find a number whose sum = -7 | _ | | SOLUTION | and product $=1 \times 12 = 12$ | 1 | | | We get -3 and -4 as the numbers $[-3+-4=-7 \text{ and } -3\times-4=12]$ | | |----------|--|---| | | $12x^2-7x+1$ | | | | $=12x^2-4x-3x+1$ | | | | | | | | =4x(3x-1)-1(3x-1) | | | | | 1 | | | =(4x-1)(3x-1) | 1 | | | A hemispherical bowl has a radius of 3.5 cm. What would be | | | | the volume of water it would contain? | | | 27 | | | | | R=3.5 cm | | | SOLUTION | Volume of hemisphere = $2/3(\Pi R^3)$ | 1 | | | =(2/3)x3.14x3.5x3.5x3.5 | 1 | | | $=89.75 \text{ cm}^3$ | 1 | | | OR | | | | Find the Total surface area of a cone, if its slant height is 21 m | | | | and diameter of its base is 24 m. | | | | Slant height of a cone (1)=21 m | | | | diameter of its base =24 m | | | | Radius (r)= $\frac{24}{2}$ =12 m | | | | Radius $(1) = \frac{1}{2} = 12 \text{ III}$ | | | SOLUTION | 2 | 1 | | | Now total surface area= $\pi r(1+r)=22/7\times12(21+12)m^2$ | | | | | 1 | | | $=22/7\times12\times33 \text{ m}^2=8712/7\text{m}^2=1244.57 \text{ m}^2$ | 1 | | • | Factorise $27Y^3 + 125Z^3$ | | | 28 | $27Y^3+125Z^3$ | | | | | | | | The expression, $27Y^3+125Z^3$ can be written as $(3Y)^3+(5Z)^3$ | | | | 2 2 2 | 1 | | | $27Y^{3}+125Z^{3}=(3Y)^{3}+(5Z)^{3}$ | | | | We know that, $x^3+y^3 = (x+y)(x^2-xy+y^2)$ | | | | $=27Y_{3}^{3}+125Z_{3}^{3}$ | | | | $=(3y)^3+(5z)^3$ | 1 | | | $= (3Y+5Z)[(3Y)^2-(3Y)(5Z)+(5Z)^2$ | | | | $= (3Y+5Z)(9Y^2-15YZ+25Z^2)$ | | | | | 1 | | 20 | Find four different solutions of the equation $x + 2y = 6$. | | | 29 | x + 2y = 6 | | | COLUTION | x + 2y = 6
$X=6-2Y$ | 2 | | SOLUTION | Λ-0-41 | 2 | | | PUT Y=0 | | |-------------|--|---| | | X=6 | | | | 1^{ST} SOLUTION (X=6, Y=0) | | | | PUT Y=1 | | | | $X=6-2\times1$ | | | | X=4 | | | | 2^{ND} SOLUTION (X=4,Y=1) | | | | PUT Y=2 | | | | $X=6-2\times 2$ | | | | X=2 | | | | 3^{RD} SOLUTION (X=2,Y=2) | | | | PUT Y=3 | | | | $X=6-2\times3$ | | | | X=0 $X=0$ | | | | 4^{TH} SOLUTION (X=0,Y=3) | 1 | | | 4 SOLUTION (A=0,1=3) | 1 | | | Find the value of k , if $x = 2$, $y = 1$ is a solution of the equation | | | | | | | 30 | 2x + 3y = k. | | | 30 | 2x + 3y = k. | | | | 2x + 3y - k. | | | | | | | | 2 1 | | | | x = 2, y = 1 | | | GOL LITTON | $2\times2+3\times1=K$ | 2 | | SOLUTION | 4.2 // | 2 | | | 4+3=K | | | | K=7 | 1 | | | Factorise $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$ | | | 31 | | | | | The expression, $8X^3 + 27Y^3 + 36X^2Y + 54XY^2$ | | | SOLUTION | can be written as $(2X)^3 + (3Y)^3 + 3(2X)^2(3Y) + 3(2X)(3Y)^2$ | 1 | | | (21)3 (21)3 2(21) 2(21) 2(21) | | | | $=(2X)^{3} + (3Y)^{3} + 3(2X)^{2}(3Y) + 3(2X)(3Y)^{2}$ | | | | $(x+y)^3 = x^3 + y^3 + 3xy (x+y)$ | 1 | | | $=(2X)^3 + (3Y)^3 + 3(2X)(3Y)(2X + 3Y)$ | | | | $=(2X+3Y)^3$ | | | | =(2X+3Y)(2X+3Y)(2X+3Y) | 1 | | | OR | | | 31 | Factorise $8X^3 + Y^3 + 27Z^3 - 18XYZ$ | | | | The expression $8X^3 + Y^3 + 27Z^3 - 18XYZ$ | | | | Can be written as $(2X)^3 + Y^3 + (3Z)^3 - 3(2X)(Y)(3Z)$ | | | SOLUTION | | 1 | | | | | | | $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$ | | |------------|---|---| | | | 1 | | | = $(2X+Y+3Z)((2X)^2+Y^2+(3Z)^2-2XY-Y(3Z)-3Z(2X))$ | | | | $(2X+Y+3Z)(4X^2+Y^2+9Z^2-2XY-3YZ-6ZX)$ | 1 | | | SECTION-D | | | | If a point C lies between two points A and B such that AC = | | | | BC, then prove that $AC = \frac{1}{2}AB$. Explain by drawing the fig. | | | 32 | | | | GOL MITHON | | | | SOLUTION | Given that, $AC = BC$ | 1 | | | Now, adding AC both sides. | | | | L.H.S+AC = R.H.S+AC | | | | L.II.STAC - K.II.STAC | 2 | | | AC+AC = BC+AC | | | | 2AC = BC + AC | | | | We know that, $BC+AC = AB$ (as it coincides with line segment AB) | | | | \therefore 2 AC = AB (If equals are added to equals, the wholes are equal.) | | | | \Rightarrow AC = (½)AB. | | | | | 2 | | | In Fig. lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and $a : b = 2 : 3$, find c . | | | | M P | | | | X C Y | | | | NA | | | 33 | | | | | We know that the sum of linear pair are always equal to 180° | | | | So, $\angle POY + a + b = 180^{\circ}$ | | | SOLUTION | | 1 | | | Putting the value of $\angle POY = 90^{\circ}$ (as given in the question) we | | | | get, $a+b=90^{\circ}$ | | | | Now, it is given that $a:b=2:3$ so, | | | | | | | | | 1 | | | Let a be 2x and b be 3x | | |----------|---|---| | | $\therefore 2x + 3x = 90^{\circ}$ | | | | Solving this we get | | | | $5x = 90^{\circ}$ | | | | So, $x = 18^{\circ}$ | | | | 1.2.2.190 260 | 1 | | | $\therefore a = 2 \times 18^{\circ} = 36^{\circ}$ Similarly, because a solution and the value will be | | | | Similarly, b can be calculated and the value will be $b = 3 \times 18^{\circ} = 54^{\circ}$ | | | | 0-3/10 -34 | 1 | | | From the diagram, b+c also forms a straight angle so, | 1 | | | $b+c=180^{\circ}$ | | | | $c+54^{\circ} = 180^{\circ}$ | | | | \therefore c = 126° | | | | | 1 | | | In Fig. if AB CD, \angle APQ = 50° and \angle PRD = 127°, find x and | | | | y. | | | | | | | | , D | | | | $\stackrel{A}{\longleftrightarrow}$ $\stackrel{P}{\longleftrightarrow}$ | | | | 50° | | | | | | | | 127° | | | | <+ | | | 33 OR | C Q K D | | | 33 OK | | | | | From the diagram, | | | | $\angle APQ = \angle PQR$ (Alternate interior angles) | | | | Now, putting the value of $\angle APQ = 50^{\circ}$ and $\angle PQR = x$ we get, | | | | $x = 50^{\circ}$ | | | SOLUTION | | 1 | | | Also, | | | | $\angle APR = \angle PRD$ (Alternate interior angles) | | | | Or, $\angle APR = 127^{\circ}$ (As it is given that $\angle PRD = 127^{\circ}$) | | | | We know that $\angle APR = \angle APQ + \angle QPR$ | | | | | 2 | | | Now, putting values of $\angle QPR = y$ and $\angle APR = 127^{\circ}$ we get, | | | | $127^{\circ} = 50^{\circ} + y$ | | | | Or, $y = 77^{\circ}$ | | | | Thus, the values of x and y are calculated as: | | | | $x = 50^{\circ}$ and $y = 77^{\circ}$ | 2 | | | Find the area of a triangle two sides of which are 18cm and | | |----------|--|---| | 34 | 10cm and the perimeter is 42cm. | | | | Assume the third side of the triangle to be "x". | | | | Now, the three sides of the triangle are 18 cm, 10 cm, and "x" cm | | | | It is given that the perimeter of the triangle = 42cm | | | | So, $x = 42-(18+10)$ cm = 14 cm | | | SOLUTION | | 1 | | | \therefore The semi perimeter of triangle = $42/2 = 21$ cm | | | | Using Heron's formula, | | | | Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$ | | | | Then of the triangle $-\sqrt{3(3-a)(3-b)(3-c)}$ | | | | | 2 | | | $=\sqrt{21(21-18)(21-10)(21-14)}$ cm ² | | | | | | | | $= \sqrt{21 \times 3 \times 11 \times 7} \text{ m}$ | 1 | | | ,[==================================== | | | | $= 21\sqrt{11} \text{ cm}^2$ | 1 | | | | _ | | | Find the curved surface area of a right circular cone whose | | | | slant height is 10 cm and base radius is 7 cm | | | 34 OR | | | | | Given that $l=10$ cm | | | | Radius $r=7$ cm | | | | | 1 | | SOLUTION | | | | | | | | | curved surface area of a right circular cone is = $\pi r l$ | 1 | | | | _ | | | $C.S = 22/7x7 \times 10$ | 1 | | | = 220 cm2 | 2 | | | In quadrilateral ACBD, $AC = AD$ and AB bisects $\angle A$. Show | | | 35 | that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD? | | | | $\begin{array}{c} C \\ \\ D \end{array}$ | | |----------|---|---| | SOLUTION | It is given that AC and AD are equal i.e. $AC = AD$ and the line segment AB bisects $\angle A$. We will have to now prove that the two triangles ABC and ABD are congruent i.e. $\triangle ABC \cong \triangle ABD$ | 2 | | | Proof: Consider the triangles $\triangle ABC$ and $\triangle ABD$,
(i) $AC = AD$ (It is given in the question)
(ii) $AB = AB$ (Common)
(iii) $\angle CAB = \angle DAB$ (Since AB is the bisector of angle A)
$\triangle ABC \cong \triangle ABD$ (by SAS congruency criterion) | 2 | | | For the 2nd part of the question, BC = BD (by C.P.C.T.) SECTION -E | 1 | | | The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122 m, 22 m and 120 m. The advertisement yields an earning of Rs 5000 per m² per year. Based on the above information and the given figure answer the followings (i) Perimeter of wall is (ii) Write down the Heron's Formula. | | | | OR If company hired one of its walls with area 1680 m ² for months, then how much rent did it nev? | | |---|--|--------| | | 3 months, then how much rent did it pay? | | | | (i) The sides of the triangle ABC are 122 m, 22 m and 120 m resp. | | | SOLUTION | Now, the perimeter will be $(122+22+120) = 264 \text{ m}$ | 1 | | | (ii) Area of $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ where $s = (a+b+c)/2$ | 1 | | | (iii) the semi perimeter (s) = 264/2 = 132 m
Using Heron's formula, | | | | Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ | | | | $=\sqrt{132(132-122)(132-22)(132-120)}$ | | | | $= \sqrt{132 \times 10 \times 110 \times 12} = 1320 \text{ m}^2$ | 2 | | | OR | | | | We know that the rent of advertising per year $= 5000 \text{ per m}^2$ | | | | \therefore The rent of one wall for 3 months = Rs. $(1680 \times 5000 \times 3)/12$ | | | | $= Rs \ 2100000.$ | 2 | | | $X' \leftarrow \begin{array}{c} X \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | | | i contract of the | | | | | See Fig and write the following: (i) The coordinates of B. (ii) The point identified by the coordinates (-3, -5). (iii) Find the abscissa of point D and the ordinate of point H. OR Find the area of the rectangle formed by the line segment | | | 37 | (i) The coordinates of B. (ii) The point identified by the coordinates (-3, -5). (iii) Find the abscissa of point D and the ordinate of point H. OR Find the area of the rectangle formed by the line segment BD and the X-axis in the figure. | 1 | | 37
SOLUTION | (i) The coordinates of B. (ii) The point identified by the coordinates (-3, -5). (iii) Find the abscissa of point D and the ordinate of point H. OR Find the area of the rectangle formed by the line segment | 1
1 |