MARKING SCHEME BSEH PRACTICE PAPER 2, 10TH MATHS(BASIC) , March2025 (ENGLISH MEDIUM)

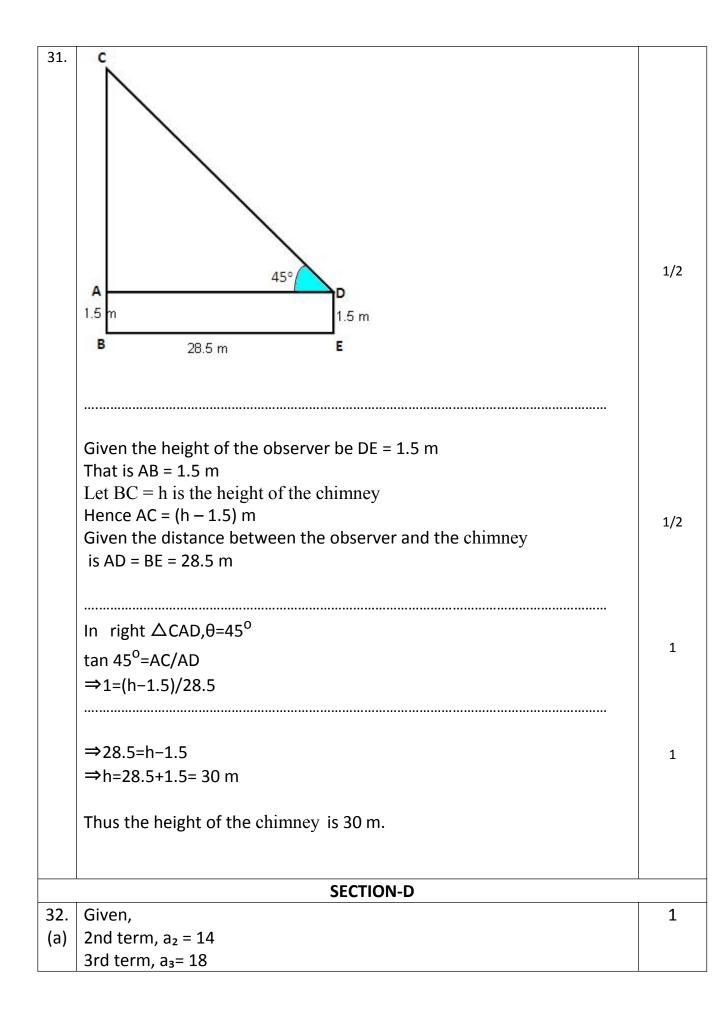
	(ENGLISH MEDIUM)	
Q. no.	Expected solutions	marks
	Section-A	
1	(d)60	1
2	(d)more than 3	1
3	$(c)(x+2)(x-1)=x^2-2x-3$	1
4	(c) 3 units	1
5	(a) -12	1
6	(a) 50°	1
7	(d) 55°	1
8	$(b)\frac{b}{\sqrt{a^2+b^2}}$	1
9	(a)60°	1
10	(b) $10\sqrt{2}$	1
11	(d) 3	1
12	$(a)\frac{1}{5}$	1
13	Irrational number	1
14	$\sqrt{119}\mathrm{cm}$	1
15	$tan\theta = a b$	1
16	$\frac{1}{2}$	1
17	$\frac{77}{2}$ cm ² or $\frac{49\pi}{4}$ cm ²	1
18	False	1
19	(a)Both Assertion(A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion(A).	1
20	(b) Both Assertion(A) and Reason (R) are true but Reason (R) is the not correct explanation of Assertion(A).	1
	SECTION-B	<u> </u>
21. (a)	x/2 + 2y/3 = -1 3x + 4y = -6(i)	1/2

	x-y/3 = 3 3x - y = 9(ii)	1/2
	When the equation (ii) is subtracted from equation (i) we get, $5y = -15$ $y = -3 \dots (iii)$	1/2
	When the equation (iii) is substituted in (i) we get, 3x - 12 = -6 3x = 6 x = 2 Hence, $x = 2$, $y = -3$	1/2
21. (b)	Using the property of a rectangle, We know that,	1/2
(5)	Lengths are equal,	,
	i.e., CD = AB Hence, x + 3y = 13(i)	
	Breadths are equal, i.e., AD = BC Hence, 3x + y = 7(ii)	1/2
	On multiplying Eq. (ii) by 3 and then subtracting Eq. (i), We get, $8x = 8$ So, $x = 1$	1/2
	On substituting x = 1 in Eq. (i), We get, y = 4 Therefore, the required values of x and y are 1 and 4, respectively.	1/2
22.	Let (-4, 6) divide AB internally in the ratio k : 1. Using the section formula, we get $ (-4, 6) = \left(\frac{3k-6}{k+1}, \frac{-8k+10}{k+1}\right) $	1

$So, -4 = \frac{3k-6}{k+1}$	1/2
$\Rightarrow -4k - 4 = 3k - 6$ $\Rightarrow 7k = 2$ $\Rightarrow k : 1 = 2 : 7$ We can check for the y-coordinate also. So, the point $(-4, 6)$ divides the line segment joining the points $A(-6, 10)$ and	1/2
B(3, – 8) in the ratio 2 : 7.	
B S Com P M Com D	
In ΔPBC and ΔPDE,	
∠BPC = ∠EPD [vertically opposite angles]	
PB/PD = 5/10 = ½ (i)	1
PC/PE = 6/12 = ½ (ii)	
From equation (i) and (ii),	
We get,	
PB/PD = PC/PE	
Since, \angle BPC of \triangle PBC = \angle EPD of \triangle PDE and the sides including these.	1/2
Then, by SAS similarity criteria	
Δ PBC \sim Δ PDE	1/2
24. We know that,	

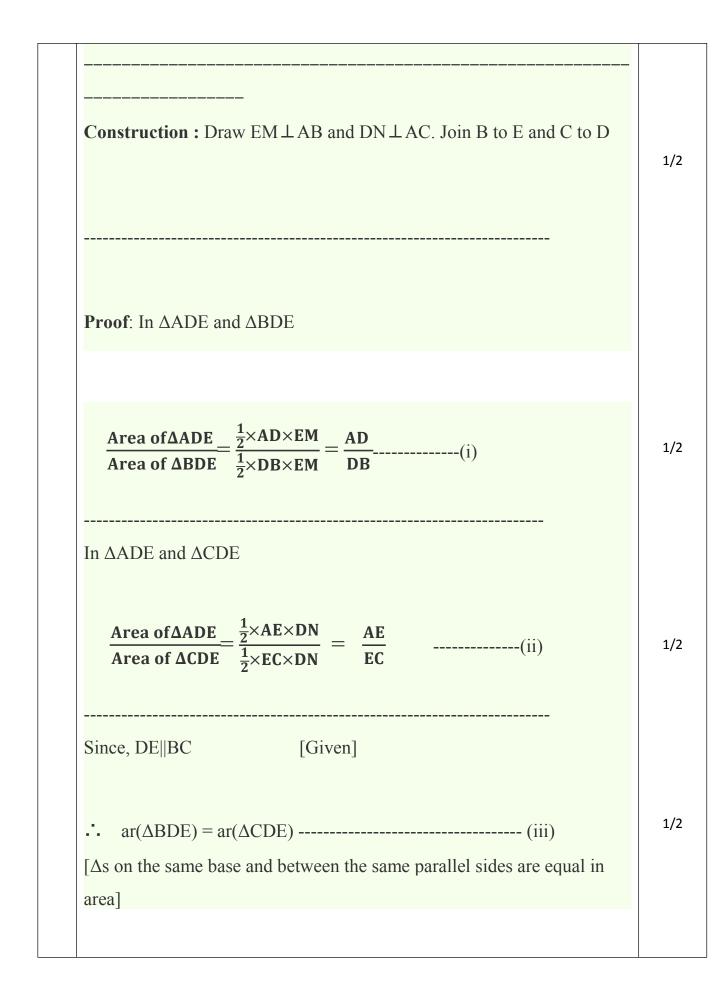
/ l- \		
(b)	cos 60° = 1/2	
	sec 30° = 2/√3	
	tan 45° = 1	1/2
	sin 30° = 1/2	
	cos 30° = √3/2	
	Now, substitute the values in the given problem, we get	
	$(5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ)/(\sin^2 30^\circ + \cos^2 30^\circ)$	1/2
	$= \{5(1/2)^2 + 4(2/\sqrt{3})^2 - 1\}/(1/2)^2 + (\sqrt{3}/2)^2$	
	= (5/4+16/3-1)/(1/4+3/4)	
		1/2
	={ (15+64-12)/12}/(4/4)	
		1/2
	= 67/12	1/2
24. (a)	$LHS = \sqrt{\frac{1+\sin A}{1+\cos A}} =$	
	$\sqrt{1-\sin A}$	
	$= \sqrt{\frac{1+\sin A}{1-\sin A}} \times \frac{1+\sin A}{1+\sin A}$	1/2
	'	
	$=\frac{1+\sin A}{\sqrt{1-\sin^2 A}}$	1/2
	γ1—3III A	

	$= 1/12 \times 22/7 \times 14 \times 14 \text{ cm}^2$	1/2
	2/10 00/5 11 12 2	
	[• Length of the minute hand (f) = 14 tin]	
	[∵Length of the minute hand (r) = 14 cm]	1/2
	Thus, area swept by minute hand in 5 minutes = $(\pi r^2/60) \times 5 = \pi r^2/12$	1.60
	Area swept by minute hand in 1 minute = $\pi r^2/60$	1/2
	radius equal to the length of the minute hand = πr^2	
25.	Area swept by the minute hand in 60 minutes = Area of the circle with	1/2
	= secA +tanA = RHS	
	$=\frac{1+\sin A}{\cos A}$	1/2
	$\sqrt{\cos^2 A}$	1/2
	$=\frac{1+\sin A}{\sqrt{2}}$	1/2

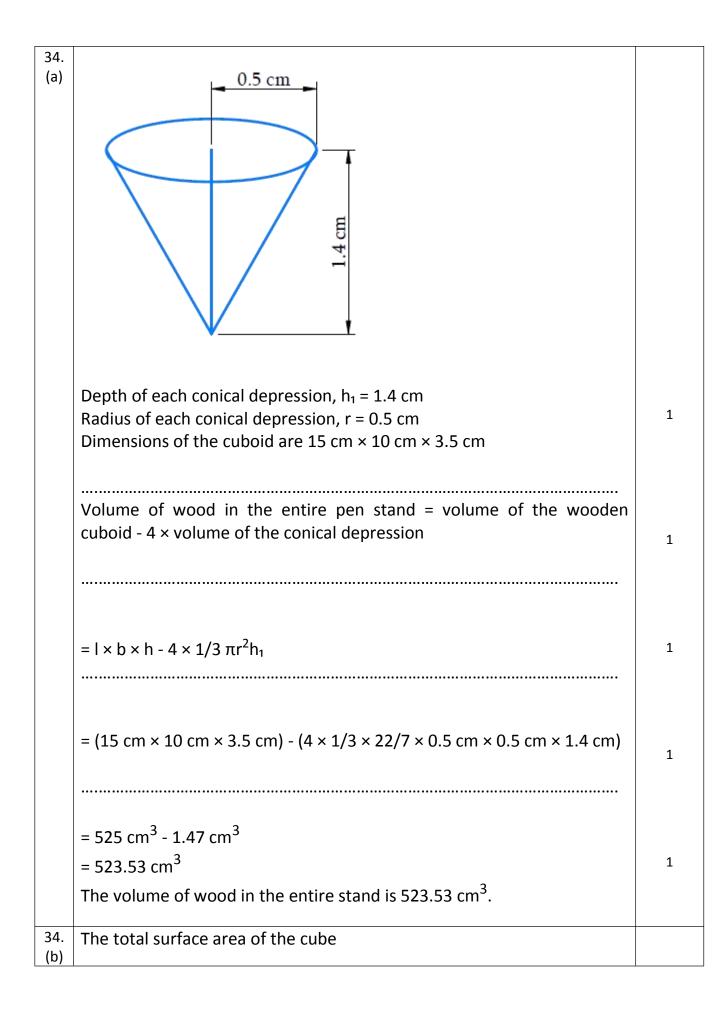

26.	Prove that $\sqrt{2}$ is irrational.	
	Solution: Let, if possible, $\sqrt{2}$ be a rational no.	1/2
	$ \therefore \sqrt{2} = \frac{p}{q}, \text{ where p and q are co-prime integers and } q \neq 0. $	1/2
	$\Rightarrow 2 = \frac{p^2}{q^2}$ $\Rightarrow p^2 = 2 q^2 \dots (i)$	1/2
	\Rightarrow 2 divides p ² \Rightarrow 2 divides p also.	
	Let p = 2m,(ii) where m is any integer.	
	$\Rightarrow p^2 = 4m^2(iii)$	1/2
	From (ii) and (iii) $2q^{2} = 4m^{2}$ $\Rightarrow q^{2} = 2m^{2}$ $\Rightarrow 2 \text{ divides } q^{2} \Rightarrow 2 \text{ divides } q \text{ also.}$ $\Rightarrow q = 2n$ (iv)	1/2
	From (i) and (iv) , p and q have 2 as common factor. \therefore p and q are not co-prime. Hence our supposition is wrong. $\therefore \sqrt{2}$ is an irrational number.	1/2
27	Cv2 2 7v Cv2 7v 2 0	
27.	$6x^{2}-3-7x=6x^{2}-7x-3=0$ \$\Rightarrow 6x^{2}+2x-9x-3=0\$	

⇒ $(2x-3)(3x+1)=0$ Zeros = $3/2,-1/3$ $\alpha+\beta=-b/a\Rightarrow(3/2)+(-1/3)=7/6=-(-7)6=-b/a$ $\alpha\beta=c/a\Rightarrow(3/2)(-1/3)=-1/2=-3/6=c/a$ Hence proved. 1 28. (a) Let Rahul's age be x years and his son's age be y years. Five years hence(later), $x+5=3$ (y+5) ⇒ $x+5=3$ y+15 ⇒ $x-3$ y = 10(1) Also, five years ago(before), $x-5=7$ (y - 5) ⇒ $x-5=7$ y - 35 ⇒ $x-7$ y = -30(2) Subtracting equation (2) from (1), $x-3$ y -x+7y = 10+30 (``eq.(2) changes its sign)		$\Rightarrow 2x(3x+1)-3(3x+1)=0$	
α+β=-b/a⇒(3/2)+(-1/3)=7/6=-(-7)6=-b/a $αβ=c/a⇒(3/2)(-1/3)=-1/2=-3/6=c/a$ Hence proved. 1 28. (a) Let Rahul's age be x years and his son's age be y years. Five years hence(later), $x+5=3$ (y+5) $⇒x+5=3$ y+15 $⇒x-3$ y=10(1) Also, five years ago(before), $x-5=7$ (y-5) $⇒x-5=7y-35$ $⇒x-7y=-30$ (2) Subtracting equation (2) from (1), $x-3$ y-x+7y = 10+30		$\Rightarrow (2x-3)(3x+1)=0$	1
$\alpha\beta$ =c/a \Rightarrow (3/2)(-1/3)=-1/2=-3/6=c/a Hence proved. 1 28. (a) Let Rahul's age be x years and his son's age be y years. 1/2 Five years hence(later),		Zeros = $3/2,-1/3$	
$\alpha\beta$ =c/a \Rightarrow (3/2)(-1/3)=-1/2=-3/6=c/a Hence proved. 1 28. (a) Let Rahul's age be x years and his son's age be y years. 1/2 Five years hence(later),			
$\alpha\beta$ =c/a \Rightarrow (3/2)(-1/3)=-1/2=-3/6=c/a Hence proved. 1 28. (a) Let Rahul's age be x years and his son's age be y years. 1/2 Five years hence(later),			
$\alpha\beta$ =c/a \Rightarrow (3/2)(-1/3)=-1/2=-3/6=c/a Hence proved. 1 28. (a) Let Rahul's age be x years and his son's age be y years. 1/2 Five years hence(later),		$\alpha + \beta = -b/a \Rightarrow (3/2) + (-1/3) = 7/6 = -(-7)6 = -b/a$	1
Hence proved. 28. (a) Let Rahul's age be x years and his son's age be y years. Five years hence(later), x+5=3 (y+5) ⇒x+5=3 y+15 1/2 ⇒x-3 y=10(1) Also, five years ago(before), x-5=7 (y-5) ⇒x-5=7y-35 ⇒x-7y=-30(2) Subtracting equation (2) from (1), x-3 y-x+7y = 10+30			1
Hence proved. 28. (a) Let Rahul's age be x years and his son's age be y years. Five years hence(later), x+5=3 (y+5) ⇒x+5=3 y+15 1/2 ⇒x-3 y=10(1) Also, five years ago(before), x-5=7 (y-5) ⇒x-5=7y-35 ⇒x-7y=-30(2) Subtracting equation (2) from (1), x-3 y-x+7y = 10+30			
Hence proved. 28. (a) Let Rahul's age be x years and his son's age be y years. Five years hence(later), x+5=3 (y+5) ⇒x+5=3 y+15 1/2 ⇒x-3 y=10(1) Also, five years ago(before), x-5=7 (y-5) ⇒x-5=7y-35 ⇒x-7y=-30(2) Subtracting equation (2) from (1), x-3 y-x+7y = 10+30			
28. (a) Let Rahul's age be x years and his son's age be y years. Five years hence(later), $x+5=3 (y+5)$ $\Rightarrow x+5=3 y+15$ $\Rightarrow x-3 y=10(1)$ Also, five years ago(before), $x-5=7 (y-5)$ $\Rightarrow x-5=7y-35$ $\Rightarrow x-7y=-30(2)$ Subtracting equation (2) from (1), $x-3 y-x+7y=10+30$			1
(a)		Hence proved.	
(a)	28	Let Pahul's age he vivears and his sen's age he vivears	
$x+5=3 \ (y+5)$ $\Rightarrow x+5=3 \ y+15$ $\Rightarrow x-3 \ y=10(1)$ Also, five years ago(before), $x-5=7 \ (y-5)$ $\Rightarrow x-5=7y-35$ $\Rightarrow x-7y=-30(2)$ Subtracting equation (2) from (1), $x-3 \ y-x+7y=10+30$		Let Randi's age be x years and his soil's age be y years.	1/2
$x+5=3 \ (y+5)$ $\Rightarrow x+5=3 \ y+15$ $\Rightarrow x-3 \ y=10(1)$ Also, five years ago(before), $x-5=7 \ (y-5)$ $\Rightarrow x-5=7y-35$ $\Rightarrow x-7y=-30(2)$ Subtracting equation (2) from (1), $x-3 \ y-x+7y=10+30$			
$x+5=3 \ (y+5)$ $\Rightarrow x+5=3 \ y+15$ $\Rightarrow x-3 \ y=10(1)$ Also, five years ago(before), $x-5=7 \ (y-5)$ $\Rightarrow x-5=7y-35$ $\Rightarrow x-7y=-30(2)$ Subtracting equation (2) from (1), $x-3 \ y-x+7y=10+30$			
$\Rightarrow x + 5 = 3 \text{ y} + 15$ $\Rightarrow x - 3 \text{ y} = 10(1)$ Also, five years ago(before), $x - 5 = 7 \text{ (y} - 5)$ $\Rightarrow x - 5 = 7 \text{ y} - 35$ $\Rightarrow x - 7 \text{ y} = -30(2)$ Subtracting equation (2) from (1), $x - 3 \text{ y} - x + 7 \text{ y} = 10 + 30$ $1/2$		Five years hence(later),	
$\Rightarrow x + 5 = 3 \text{ y} + 15$ $\Rightarrow x - 3 \text{ y} = 10(1)$ Also, five years ago(before), $x - 5 = 7 \text{ (y} - 5)$ $\Rightarrow x - 5 = 7 \text{ y} - 35$ $\Rightarrow x - 7 \text{ y} = -30(2)$ Subtracting equation (2) from (1), $x - 3 \text{ y} - x + 7 \text{ y} = 10 + 30$ $1/2$		V. F = 2 (v. F)	
⇒x - 3 y = 10(1) Also, five years ago(before), x-5 = 7 (y - 5) ⇒ x-5 = 7y - 35 ⇒x-7y = -30(2) Subtracting equation (2) from (1), x - 3 y -x +7y = 10+30 1/2		X+ 5 = 3 (y + 5)	
⇒x - 3 y = 10(1) Also, five years ago(before), x-5 = 7 (y - 5) ⇒ x-5 = 7y - 35 ⇒x-7y = -30(2) Subtracting equation (2) from (1), x - 3 y -x +7y = 10+30 1/2		⇒x+5=3 v + 15	1/2
Also, five years ago(before), $x-5=7 (y-5)$ $\Rightarrow x-5=7y-35$ $\Rightarrow x-7y=-30(2)$ Subtracting equation (2) from (1), x-3y-x+7y=10+30			,
x-5 = 7 (y-5) $\Rightarrow x-5 = 7y-35$ $\Rightarrow x-7y = -30(2)$ Subtracting equation (2) from (1), x-3y-x+7y = 10+30		\Rightarrow x - 3 y = 10(1)	
x-5 = 7 (y-5) $\Rightarrow x-5 = 7y-35$ $\Rightarrow x-7y = -30(2)$ Subtracting equation (2) from (1), x-3y-x+7y = 10+30			
x-5 = 7 (y-5) $\Rightarrow x-5 = 7y-35$ $\Rightarrow x-7y = -30(2)$ Subtracting equation (2) from (1), x-3y-x+7y = 10+30			
x-5 = 7 (y-5) $\Rightarrow x-5 = 7y-35$ $\Rightarrow x-7y = -30(2)$ Subtracting equation (2) from (1), x-3y-x+7y = 10+30		Also five veges and the form	
$\Rightarrow x-5 = 7y - 35$ $\Rightarrow x-7y = -30(2)$ Subtracting equation (2) from (1), $x - 3y - x + 7y = 10 + 30$ $1/2$		Also, five years ago(before),	
$\Rightarrow x-5 = 7y - 35$ $\Rightarrow x-7y = -30(2)$ Subtracting equation (2) from (1), $x - 3y - x + 7y = 10 + 30$ $1/2$		y-5 = 7 (y-5)	1/2
\Rightarrow x-7y = -30(2) Subtracting equation (2) from (1), x - 3y - x + 7y = 10 + 30		\(\frac{1}{3} - \frac{1}{3}\)	,
\Rightarrow x-7y = -30(2) Subtracting equation (2) from (1), x - 3y - x + 7y = 10 + 30		\Rightarrow x-5 = 7y - 35	
Subtracting equation (2) from (1), x - 3y - x + 7y = 10 + 30		,	
x - 3y - x + 7y = 10 + 30		⇒x-7y = -30(2)	
x - 3y - x + 7y = 10 + 30			
x - 3y - x + 7y = 10 + 30		Subtraction and time (2) for a (4)	
1/2		Subtracting equation (2) from (1),	
1/2		$\begin{vmatrix} x - 3 y - x + 7y \\ = 10 + 30 \end{vmatrix}$	
,, , , , , , , , , , , , , , ,			1/2
, , , , , , , , , , , , , , , , , , ,		(- 1 ()	

	4y = 40	
	→ 10	
	⇒y = 10	
	Put y = 10 in eq. (1),	1/2
	x - 3(10) = 10	1/2
	$\Rightarrow x - 30 = 10$	
	⇒x = 40	
	Thus, present age of Rahul=x=40 years and	1/2
	present age of Rahul's son=y=10 years.	
28. (b)	Let the larger angle = x Smaller angle = y	
	As both angles are supplementary, x + y = 180	1
	⇒ $x = 180 - y (i)$	
	Difference is 18 degrees.	
	So, x - y = 18	1/2
	⇒ x = 18 + y (i)	
	Substituting the value of x in equation (i) we get,	
	$\Rightarrow 18 + y = 180 - y$ $\Rightarrow -y - y = 18 - 180$	
	$\Rightarrow -2y = -162$	
	⇒ y=-162/-2	
	⇒ y = 81	1/2
	Substituting the value of y in equation (i), we get,	
	\Rightarrow x = 180 - 81 = 99	1/2


	Haras the angles are 00° and 01°	1/2
20	Hence, the angles are 99° and 81°.	
29.	We know that the distance between the two points is given	
	by the Distance Formula = $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ By substituting the values of points P (2, - 3) and Q (10, y) in the distance formula, we get	1/2
	$PQ = \sqrt{(2-10)^2 + (-3-y)^2} = 10$	
	$PQ = \sqrt{(-8)^2 + (3 + y)^2} = 10$	1/2
	Squaring on both sides, we get	
	$64 + (y + 3)^2 = 100$	1/2
	$(y + 3)^2 = 36$ $y + 3 = \sqrt{36}$ $y + 3 = \pm 6$	1/2
	y + 3 = 6 or $y + 3 = -6Therefore, y = 3 or -9 are the possible values for y.$	1
30. (a)	Given, $\cos A + \cos^2 A = 1$	
	$\Rightarrow \cos A = 1 - \cos^2 A$ $\Rightarrow \cos A = \sin^2 A \qquad [\because \sin^2 A = 1 - \cos^2 A]$ (i)	1
	LHS=($\sin^2 A + \sin^4 A$) = ($\sin^2 A + (\sin^2 A)^2$)	1/2

	= (sin ² A + (cos A) ²) [using (i)]	1
	$= \sin^2 A + \cos^2 A$ $= 1 = RHS$	1/2
30. (b)	LHS=(sinA+cosecA) ² +(cosA+secA) ² =sin ² A+cosec ² A+2sinAcosecA+cos ² A+sec ² A+2cosAsecA	1/2
	=sin²A+cos²A+cosec²A+sec²A+2sinA×1/sinA+2cosA×1/cosA [∵cosecA=1/sinA and secA=1/cosA]	1
	=1+cosec ² A+sec ² A+2+2 [::sin ² A+cos ² A=1]	1/2
	=5+(1+cot ² A)+(1+tan ² A) $[\because 1+tan^2A=sec^2A \text{ and } 1+cot^2A=cosec^2A]$ =7+tan ² A+cot ² A= RHS	1



	Common difference, $d = a_3 - a_2 = 18 - 14 = 4$	
	We know that nth term of an AP is, $a_n = a + (n - 1)d$ $a_2 = a + d$ 14 = a + 4	
	a = 10	1
	Sum of n terms of AP is given by $S_n = n/2 [2a + (n - 1) d]$	1
	S ₅₁ = 51/2 [2 × 10 + (51 - 1) 4]	1
	= 51/2 [20 + 50 × 4] = 51/2 × 220 = 51 × 110	
	= 5610	1
32. (b)	nth term of an AP $a_n = a + (n - 1)d$ Let a be the first term and d the common difference.	1/2
	According to the question, $a_3 = 16$ and $a_7 - a_5 = 12$ a + (3 - 1)d = 16 a + 2d = 16 (1)	1
	Using $a_7 - a_5 = 12$ $[a + (7 - 1) d] - [a + (5 - 1) d] = 12$ $[a + 6d] - [a + 4d] = 12$ $2d = 12$ $d = 6$	1\frac{1}{2}
	By substituting this in equation (1), we obtain $a + 2 \times 6 = 16$	

	12 . 16	
	a + 12 = 16 a = 4	1
	Therefore, A.P. will be 4, $4 + 6$, $4 + 2 \times 6$, $4 + 3 \times 6$, Hence, the sequence will be 4, 10, 16, 22,	1
33. (a)		
	Statement:Basic Proportionality Theorem	
	Prove that if a line is drawn parallel to one side of a triangle ,the other two	1
	sides are divided in the same ratio.	
	Given: In ΔABC, DE BC	1/2
	D E C	1/2
	To prove: $\frac{AD}{DB} = \frac{AE}{EC}$	1/2

	From eq. (i), (ii) and (iii)		
	: $\frac{AD}{DB} = \frac{AE}{EC}$ Hence proved.	1/2	
33. (b)	B C Q M R	1/2	
	Given, $\triangle ABC \sim \triangle PQR$ $\Rightarrow \angle ABC = \angle PQR$ (corresponding angles) (1) $\Rightarrow AB/PQ = BC/QR$ (corresponding sides)	1	
	⇒ AB/PQ = (BC/2) / (QR/2) ⇒ AB/PQ = BD/QM (D and M are mid-points of BC and QR) (2)	1	
	In \triangle ABD and \triangle PQM, \angle ABD = \angle PQM (from 1) AB/PQ = BD/QM (from 2) \Rightarrow \triangle ABD \sim \triangle PQM (SAS criterion)	1 ¹ / ₂	
	. ⇒ AB/PQ = BD/QM = AD/PM (corresponding sides) ⇒ AB/PQ = AD/PM Hence proved.	1	

	=o×(eage)^=b×	:5×5 cm ² =150 cm ²	·		1
			Total Surface Area Area of hemispher	a of cube - base are e	a 1
	=150-πr ² +2πr ²	<u>2</u>			
	$=(150+\pi r^2)$ cm ⁻²	2			1
	=150 cm ² +(22/				1
•	=(150+13.86) c =163.86 cm ² class interval		Number of	$f_i x_i$	1
	=(150+13.86) c =163.86 cm ² class interval	class-mark (x _i)	$\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$		
	=(150+13.86) c =163.86 cm ² class interval 11-13	class-mark (x _i)	$\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	84	
	=(150+13.86) c =163.86 cm ² class interval 11-13 13-15	class-mark (x _i) 12 14	Number of children(f _i) 7 6	84	
	=(150+13.86) c =163.86 cm ² class interval 11-13 13-15 15-17	class-mark (x _i)	$\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	84	1
	=(150+13.86) c =163.86 cm ² class interval 11-13 13-15	class-mark (x _i) 12 14 16	Number of children(f _i) 7 6 9	84 84 144	
	=(150+13.86) c =163.86 cm ² class interval 11-13 13-15 15-17 17-19	class-mark (x _i) 12 14 16 18	Number of children(f _i) 7 6 9 13	84 84 144 234	1
·)	=(150+13.86) c =163.86 cm ² class interval 11-13 13-15 15-17 17-19 19-21	class-mark (x _i) 12 14 16 18 20	Number of children(f _i) 7 6 9 13	84 84 144 234 20f	1

	$\sum f_i x_i$		
	$Mean = \overline{X} = \frac{\sum f_i x_i}{\sum f_i}$		1/2
	<u></u>		
	752+20f		1/2
	$\Rightarrow 18 = \frac{752 + 20f}{44 + f}$		
	$\Rightarrow 18(44+f) = 752+20f$		_
			1/2
	⇒ 792 +18f = 752+ 20f		
	\702.7E2 201.40.f		
	⇒792-752 = 20f -18 f		1/2
	⇒40 = 2f		
	⇒ f = 20		1
	Hence, missing frequency f = 20		1
	Trenee, missing frequency 1 20		
35.			
(b)			
	Number of Cars	Frequency	
	0-10	7	
	10-20	14	
	20-30	13	
	30-40	12	
	40-50	20	
	50-60	11	
	60-70	15	
	70-80	8	
	From the table, it can be observed that the	maximum class frequency is 20	
	belonging to class interval 40 – 50	maximum class frequency is 20,	1
	Therefore, modal class = 40 – 50		
	Therefore, modal class = 40 30		
	Class size, h = 10		
	Lower limit of modal class, I = 40		
	Frequency of modal class, $f_1 = 20$		1
	Frequency of class preceding modal class, $f_0 = 12$		_

Frequency of class succeeding the modal class, f ₂ = 11	
Mode = $I + [(f_1 - f_0)/(2f_1 - f_0 - f_2)] \times h$	1
	1
$= 40 + [(20 - 12)/(2 \times 20 - 12 - 11)] \times 10$	
40 1 [(20 12)/(2 × 20 12 11)] × 10	1/2
$= 40 + [8/(40 - 23)] \times 10$	
$= 40 + (8/17) \times 10$	1
= 40 + 4.705	
= 44.705	
≈ 44.7	1/2
Hence, the mode is 44.7	1/2
Section - E 36. Distance	1
36. (i) Time = $\frac{\text{Distance}}{\text{Speed}}$	1
(ii)Let the usual speed of plane be x km/h	
New increased speed of plane = (x + 250)km/h	
Total distance=1500 km	
According to question	
$\frac{1500}{1500} = \frac{1500}{1500} = \frac{1}{1500}$	1/2
$\frac{x}{x} - \frac{x}{x + 250} = \frac{1}{2}$	1/2
1500(x + 250) - 1500x 1	
$\frac{1500(x+250)-1500x}{x(x+250)} = \frac{1}{2}$	
$\frac{1500x + 375000 - 1500x}{1000} = \frac{1}{2}$	
$\frac{130000 + 370000 - 130000}{x(x + 250)} = \frac{1}{2}$	
$X^2 + 250 x = 750000$	
X +250 X = 750000	
$X^{2} + 250 x = 750000$ $X^{2} + 250 x - 750000 = 0$	1/2
	1/2
	1/2

	(iii)(a) X ² +250 x - 750000=0	
	X ² +1000x - 750x- 750000=0	
	X(x+1000)-750(x +1000)=0	
	(x+1000)(x-750)=0	1
	V 1000 on v 750	
	X=-1000 or x = 750	
	Reject x=-1000, because speed cannot be negative.	1
	Hence, usual speed of plane is 750km/h.	_
	(iii)(b) X ² +250 x - 750000=0	
	X ² +1000x - 750x- 750000=0	
	X(x+1000)-750(x +1000)=0	
		1
	(x+1000)(x-750)=0	_
	X=-1000 or x = 750	
	Reject x=-1000, because speed cannot be negative.	
	Hence, new speed of plane is x+250= 750+250=1000km/h.	1
	Helice, new speed of plane is x+250= 750+250=1000km/n.	
37.	(i) Since, radius at a point of contact is perpendicular to tangent.	
	 ∴ By Pythagoras theorem, we have 	
	$PA = \sqrt{PS^2 + AS^2} = \sqrt{12^2 + 5^2} = \sqrt{169} = 13 \text{ cm}$	4
		1
	(ii)one common tangent can be drawn when two circles touch externally.	1
	(iii)(a) Pry Prythaganag the agrees and bearing	
	(iii)(a) By Pythagoras theorem, we have	
	$BQ = \sqrt{TQ^2 + TQ^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \text{ cm}$	1
	OV- DO DV - 5 4 -1 om	
	QY = BQ - BY = 5 - 4 = 1 cm	1

	(iii) (b) $PK = PA + AK = 13 + 5 = 18 \text{ cm}$	1
	XY = XK + KY = 10 + 8 = 18 cm	1
38.	(i) Total no. of fish in the aquarium = 13+18+12+11= 54 Number of male fish in the aquarium = 36 \therefore Number of female fish in the aquarium = 54- 36 = 18 So,probability of selecting a female fish = $\frac{\text{no. of favourable outcomes}}{\text{total no. of possible outcomes}} = \frac{18}{54} = \frac{1}{3}$	1
	(ii)The probability of selecting a flowerhorn fish= $\frac{\text{no. of favourable outcomes}}{\text{total no. of possible outcomes}} = \frac{18}{54} = \frac{1}{3}$	1
	(iii) (a) The probability of selecting a koi fish $\frac{\text{no. of favourable outcomes}}{\text{total no. of possible outcomes}} = \frac{12}{54} = \frac{2}{9}$	1
	P(selecting a guppy fish) = $\frac{\text{no. of favourable outcomes}}{\text{total no. of possible outcomes}} = \frac{13}{54}$	1

(iii) (b)Total no. of angel fish and flowerhorn fish= 18 + 11 = 29P (selecting either angel fish or flowerhorn fish)= $\frac{29}{54}$ 1

P (selecting neither angel fish nor flowerhorn fish) = = 1- P (selecting either angel fish or flowerhorn fish) $= 1 - \frac{29}{54} = \frac{25}{54}$ 1