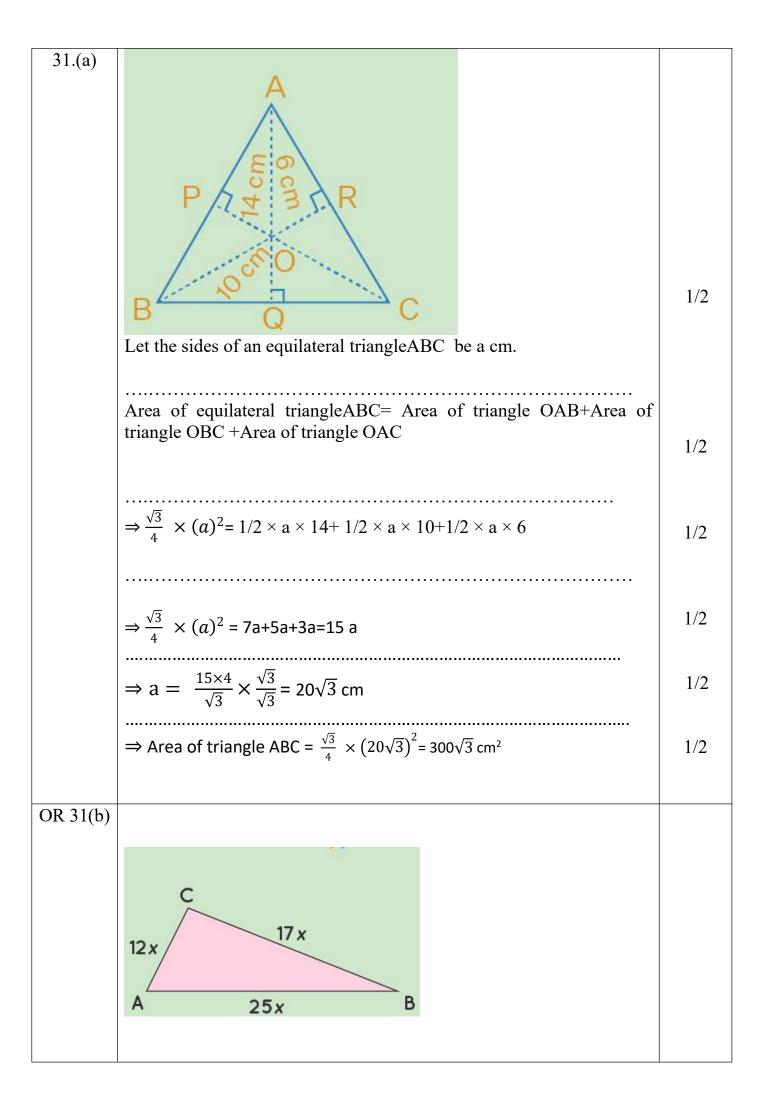
	MARKING SCHEME, BSEH SAMPLE PAPER ,9 TH MATHS , (2025-26)(ENGLISH MEDIUM)	
Q. no.	Expected solutions	marks
	Section-A	
1	(d)0.4014001400014	1
2	$(a)\frac{1}{9}$	1
3	(d)not defined	1
4	(d)27	1
5	(d)(0,2)	1
6	(c)Infinitely many solutions	1
7	(b)1	1
8	(d)3	1
9	Equal	1
10	(c)108°	1
11	(b)AC= DE	1
12	(c)opposite angles are bisected by the diagonals	1
13	(d)45°	1
14	Side of equilateral angle=6 cm [using area of equilateral triangle $= \frac{\sqrt{3}}{4} \times (side)^2$	1
15	Volume of sphere= $\frac{4\pi}{3} \times (radius)^3 = \frac{4\pi}{3} \times (2r)^3 = \frac{32\pi r^3}{3}$	1
16	TSA of cone = $\pi \times radius(slantheight + radius) =$	1
10	$= \pi \times \frac{r}{2} \left(2\ell + \frac{r}{2} \right) = \pi r \left(\ell + \frac{r}{4} \right)$	1
17	TSA of hemisphere = $27 \pi \text{cm}^2$	1
18	class mark = $\frac{120+90}{2} = \frac{210}{2} = 105$	1
19	(b)Both Assertion(A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion(A).	1
20	(d) Assertion(A) is false but Reason(R) is true.	1
	Section B	
21.(a)	$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$	1/2
	$= 250+2\times3$ = 256	1/2

	\Rightarrow a + b+ c = $\pm \sqrt{256}$ = ± 16	1
OR 21.(b)	Let $p(x) = x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$ $\therefore p(-1) = (-1)^3 - (-1)^2 - (2 + \sqrt{2})(-1) + \sqrt{2}$	1/2
	$= -1 - 1 + 2 + \sqrt{2} + \sqrt{2}$	
	$=2\sqrt{2}\neq0$	1/2
	Since the remainder of p(-1) \neq 0, x + 1 is not a factor of $x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$.	1
22.	Coordinates of point B are B(4,3)	1/2
	Coordinates of point M are M(-3,4)	1/2
	Coordinates of point L are L(-5,- 4)	1/2
	Coordinates of point S are S(3,-4)	1/2
23.	AC = BD (given) ⇒ AB+BC = BC+C D [∵ Point B lies between A and C and point C lies between B and D]	1/2+1/2
	⇒ AB= CD [Subtracting equals from equals]	1/2+1/2


24.	Let the sides of triangle be $a = 41 \text{ m}$, $b = 40 \text{ m}$ and $c = 9 \text{ m}$.	
	∴ semi-perimeter $s = \frac{a+b+c}{2} = \frac{41+40+9}{2} = \frac{90}{2} = 45$	1/2
	Heron's formula, Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$	1/2
	$= \sqrt{45(45 - 41)(45 - 40)(45 - 9)}$	
	$= \sqrt{45 \times 4 \times 5 \times 36}$	1/2
	$= \sqrt{3 \times 3 \times 5 \times 2 \times 2 \times 5 \times 2 \times 2 \times 3 \times 3}$	
	$=3\times 5\times 2\times 2\times 3=180~m^2$	1/2
25.(a)	Surface area of sphere $S_1 = 4\pi r^2$ Decrease in diameter = 25% of $2r = \frac{25}{100} \times 2r = \frac{r}{2}$	
	Decreased diameter= $2r - \frac{r}{2} = \frac{3r}{2}$ \Rightarrow Decreased radius = $\frac{3r}{4}$	1/2
	New surface area $S_2 = 4\pi \left(\frac{3r}{4}\right)^2 = \frac{9\pi(r)^2}{4}$	1/2
	%Decrease in surface area = $\frac{S_2 - S_1}{S_1} \times 100$	
	$= \frac{4\pi r^2 - \frac{9\pi(r)^2}{4}}{4\pi r^2} \times 100$	1/2
	$= \frac{7}{16} \times 100 = 43.75\%$	1/2

OR		
25.(b)	7 cm	
	Slant height, $1 = \sqrt{r^2 + h^2}$ $= \sqrt{(7)^2 + (24)^2}$ $= \sqrt{49 + 576}$ $= \sqrt{625}$ $= 25 \text{ cm}$ Area of the sheet required to make each cap = π rl	1/2
	$= 22/7 \times 7 \text{ cm} \times 25 \text{ cm} = 550 \text{ cm}^2$	1/2+1/2
	Area of the sheet required to make 10 such caps = $10 \times 550 \text{ cm}^2 = 5500 \text{ cm}^2$	1/2
	Section C	
26.	$\frac{5}{\sqrt{3} - \sqrt{5}} = \frac{5}{\sqrt{3} - \sqrt{5}} \times \frac{\sqrt{3} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$	1
	$= \frac{5(\sqrt{3} + \sqrt{5})}{(\sqrt{3})^2 - (\sqrt{5})^2}$	1
	$=\frac{5(\sqrt{3}+\sqrt{5})}{3-5}$	1/2
	$=\frac{-5(\sqrt{3}+\sqrt{5})}{2}$	1/2

27.	$64a^{3} - 27b^{3} - 144a^{2}b + 108ab^{2}$ $= (4a)^{3} - (3b)^{3} - 3(4a)^{2}(3b) + 3(4a)(3b)^{2}$	1
	which is of the form $(x - y)^3 = x^3 - y^3 - 3x^2y + 3xy^2$	1/2
	Here, $x = 4a$, $y = 3b$	1/2
	Hence $64a^3 - 27b^3 - 144a^2b + 108ab^2 = (4a - 3b)^3$ = $(4a - 3b)(4a - 3b)(4a - 3b)$	1
28.	Rewrite the equation y-2=0 as	
	0x+1y-2=0	1
	The equation in the form ax+ by+ c=0 is 0x+1y-2=0	1/2
	with a=0, b=1 and c= -2.	$1\frac{1}{2}$
29.	In the adjoining figure, AB∥CD and CD∥EF. Also,EA⊥ AB. If ∠BEF=55°, find the values of x,y and z.	
	$ \begin{array}{c c} A & C \\ B & x \\ \hline \end{array} $	

	Since for parallel lines , corresponding angles are equal. $\Rightarrow x = y$	1/2
	For parallel lines, sum of interior angles on the same side of transversal is 180°	
	\Rightarrow y +55° = 180°	1/2
	\Rightarrow y = 125°	
	$\Rightarrow x = y = 125^{\circ}$	1/2
	Since AB CD and CD EF	
	⇒AB∥EF	1/2
	$\angle EAB + \angle FEA = 180^{\circ}$	
	[For parallel lines, sum of interior angles on the same side of transversal is 180°]	
	$\Rightarrow 90^{\circ} + z + 55^{\circ} = 180^{\circ}$	
	⇒z= 35°	1
30.(a)	 (i)As A,B and C are equidistant from each other. ∴ AB = BC = CA ⇒ ΔABC is equilateral triangle ⇒ all angles are equal to 60°. Therefore, ∠ BAC=60°. 	1
	(ii)We know that the angle subtended by the arc at the centre of the circle is twice the angle subtended at any point on the	1/2

	remaining part of the circle,	
	$\therefore \angle BOC = 2\angle BAC = 2 \times 60^{\circ} = 120^{\circ}$	1/2
	(iii)Area of equilateral triangle ABC= $\frac{\sqrt{3}}{4} \times (side)^2$ =	1/2+1/2
	$=\frac{\sqrt{3}}{4} \times (2)^2 = \sqrt{3} \text{ m}^2$	
OR 30.(b)	Draw AM ⊥ CD and BN ⊥ CD.	
	D M N C	1/2
	Consider $\triangle AMD$ and $\triangle BNC$ AD = BC (Given) $\angle AMD = \angle BNC$ (90°) AM = BN (Perpendicular distance between two parallel lines is same) By RHS congruence, $\triangle AMD \cong \triangle BNC$.	1
	Using CPCT, \angle ADC = \angle BCD(1)	
	∠BAD and ∠ADC are on the same side of transversal AD.	1/2
	$\angle BAD + \angle ADC = 180^{\circ}$ $\angle BAD + \angle BCD = 180^{\circ}$ [From equation(1)]	1/2
	This equation proves that the sum of opposite angles is supplementary. Hence, ABCD is a cyclic quadrilateral.	1/2

	So the perimeter of the triangle will be $Perimeter = 12x + 17x + 25x$	
	12x + 17x + 25x = 540 (given)	
	54x = 540	1/2
	x = 540/54	
	x = 10 cm	
	Therefore, the sides of the triangle:	
	$12x = 12 \times 10 = 120$ cm, $17x = 17 \times 10 = 170$ cm, $25x = 25 \times 10 = 250$ cm	$\begin{vmatrix} & & 1 & \end{vmatrix}$
	a = 120cm, $b = 170$ cm, $c = 250$ cm	1
	Semi-perimeter(s) = $540/2 = 270$ cm	
	By using Heron's formula,	
	Area of a triangle = $\sqrt{s(s-a)(s-b)(s-c)}$	
	$= \sqrt{270(270 - 120)(270 - 170)(270 - 250)}$	
	$= \sqrt{270 \times 150 \times 100 \times 20}$	
	$=\sqrt{81000000}$	
		$1\frac{1}{2}$
	$= 9000 \text{ cm}^2$	2
	7000 CIII	
	SECTION D	
32.(b)	Given: Linear Equation $x - 2y = 4$ Equation (1)	
	i) Consider $(0, 2)$ By Substituting $x = 0$ and $y = 2$ in the given Equation (1)	
	$\begin{vmatrix} x - 2y = 4 \end{vmatrix}$	
	0 - 2(2) = 4	1
	$\begin{vmatrix} 0 - 4 = 4 \\ - 4 \neq 4 \end{vmatrix}$	
	$L.H.S \neq R.H.S$	
	Therefore, $(0, 2)$ is not a solution to this equation.	
	ii) Consider (2, 0)	
	By Substituting, $x = 2$ and $y = 0$ in the given Equation (1),	

	$ \begin{vmatrix} x - 2y = 4 \\ 2 - 2(0) = 4 \end{vmatrix} $	1
	2 - 0 = 4	
	$2 \neq 4$ L.H.S \neq R.H.S	
	Therefore, $(2, 0)$ is not a solution to this equation.	
	iii) (4, 0)	
	By Substituting, $x = 4$ and $y = 0$ in the given Equation (1) $x - 2y = 4$	
	4 - 2(0) = 4	
	$\begin{vmatrix} 4 - 0 = 4 \\ 4 = 4 \end{vmatrix}$	1
	L.H.S = R.H.S	
	Therefore, $(4, 0)$ is a solution to this equation.	
	iv) $(\sqrt{2}, 4\sqrt{2})$	
	By Substituting, $x = \sqrt{2}$ and $y = 4\sqrt{2}$ in the given Equation (1)	
	x - 2y = 4	1
	$ \sqrt{2} - 8\sqrt{2} = 4 $ $ -7\sqrt{2} \neq 4 $	
	$L.H.S \neq R.H.S$	
	Therefore, $(\sqrt{2}, 4\sqrt{2})$ is not a solution to this equation.	
	v) (1, 1)	
	By Substituting, $x = 1$ and $y = 1$ in the given Equation (1)	
	$\begin{vmatrix} x - 2y = 4 \\ 1 - 2(1) = 4 \end{vmatrix}$	1
	$\begin{vmatrix} 1-2(1)-4 \\ 1-2=4 \end{vmatrix}$	
	-1 ≠ 4	
	L.H .S \neq R.H .S Therefore, (1, 1) is not a solution to this equation.	
	Therefore, (1, 1) is not a solution to this equation.	
OR 32.(a)	$x = k^2$ and $y = k$ is a solution of the equation x-5y +6 = 0	
	\Rightarrow k ² -5k+6=0	1
	$\Rightarrow k^2-3k-2k+6=0$	_
		1
	⇒k(k-3)-2(k-3)=0	
		1
	I .	

	⇒ (k-3)(k-2)=0	1
	⇒k-2=0 or k-3=0	1
	⇒k=2, k=3	
33.(a)	Given: $AB = PQ$, $AM = PN$, $BM = QN$	
	$\begin{array}{c} A \\ P \\ \hline \\ M \end{array}$	
	 (i) In ΔABC, AM is the median to BC. ∴ BM = 1/2 BC In ΔPQR, PN is the median to QR. 	
	$\therefore QN = 1/2 QR$	
	It is given that $BC = QR$	
	$\therefore 1/2 \text{ BC} = 1/2 \text{ QR}$	1
	$\therefore BM = QN \dots (1)$	1
	In $\triangle ABM$ and $\triangle PQN$, $AB = PQ \text{ (Given)}$	
	BM = QN [From equation (1)] $AM = DN (Given)$	$1\frac{1}{2}$
	AM = PN (Given) ∴ ΔABM ≅ ΔPQN (Using SSS congruence criterion)	2
	2. 2. 1514 At Q14 (Coming 555 congruence criterion)	
	$\Rightarrow \angle ABM = \angle PQN (By CPCT)$	
	$\Rightarrow \angle ABC = \angle PQR \dots (2)$	1
	(ii) In \triangle ABC and \triangle PQR,	
	AB = PQ (Given)	11
	$\angle ABC = \angle PQR$ [From Equation (2)]	1 2
	BC = QR (Given)	
L	ı	1

	∴ ΔABC ≅ ΔPQR (By SAS congruence rule)	
OR33.(b)	We have $\angle BAC' = \angle CAB'$ [each60°] $\Rightarrow \angle BAC' + \angle BAC = \angle CAB' + \angle BAC$ $\Rightarrow \angle CAC' = \angle B'AB \dots (i)$	1
	Now, in ΔACC'and ΔAB'B	
	AC'= AB [sides of equilateral $\triangle ABC'$] $\angle CAC' = \angle B'AB \qquad [From(i)]$ $AC = AB' [sides of equilateral \triangle ACB']$	$1\frac{1}{2}$
	∴ ΔACC′ ≅ ΔAB′B [SAS congruence]	1
	⇒CC′= BB′ [CPCT]	1/2
34.(a)	Given: ABCD is a parallelogram and DP = BQ (i) In ΔAPD and ΔCQB, ∠ADP = ∠CBQ (Alternate interior angles for BC AD) AD = CB (Opposite sides of parallelogram ABCD) DP = BQ (Given) ∴ ΔAPD ≅ ΔCQB (Using SAS congruence rule)	1
	(ii) Since ΔAPD ≅ ΔCQB, ∴ AP = CQ (By CPCT)	1
	 (iii) In ΔAQB and ΔCPD, AB = CD (Opposite sides of parallelogram ABCD) ∠ABQ = ∠CDP (Alternate interior angles for AB CD) BQ = DP (Given) ∴ ΔAQB ≅ ΔCPD (Using SAS congruence rule) 	1

		T
	(iv) Since $\triangle AQB \cong \triangle CPD$, $\therefore AQ = CP (CPCT)$	1
	(v) From the result obtained in (ii) and (iv), AQ = CP and AP = CQ Since opposite sides in quadrilateral APCQ are equal to each other, thus APCQ is a parallelogram.	1
OR 34.(b)	Given: ABC is a triangle in which AD is median and E is mid-point of the median AD,E is produced to meet AC at F.	
	To prove: $AF = \frac{1}{3}AC$	1/2
	Constuction:DG BF intersecting AC at G.	1/2
	Proof:In $\triangle ADG$ E is mid point of AD and EF DG. $\therefore AF = FG \dots (i) [converse of mid-point theorem]$	1
	Similarly, In ΔFBC D is mid point of BC and DG BF. ∴ FG = GC(ii)	1
	From (i) and (ii) AF = FG = GC(iii)	1/2

	But AC= AF + FG + GC			1/2	
	= AF + AF + AF = 3AF				1/2
					172
	$\Rightarrow AF = \frac{1}{3}AC$				1 /0
	3				1/2
35.(a)	r) Frequency distribution table :				
	Cost of living index	Class marks	Number of weeks		
	140 - 150	145	5		
	150 - 160	155	10		
	160 - 170	165	20		
	170 - 180	175	9		
	180 - 190	185	6		
	190 - 200	195	2		
	Steps to draw frequen	cy polygon:			
	Since, the scale on x-axis starts at 130, a kink is shown near the origin on x-axis to indicate that the graph is drawn to scale beginning at 130				
	Take 2 cm along x-axis = 10 units (cost of living index).			1/2	
	Take 2 cm along y-axis = 5 weeks.				

	The mid-points of given class-intervals are 145,155,165,175,185,195			
		1/2		
	The points corresponding to the mid-points of class-intervals and given frequencies of classes are (145,5),(155,10),(165,20).(175,9),(185,6),(195,2)			
	Plot them on graph paper and join consecutive points by line segments Also, Join first end point with mid-point of class 130 - 140 with zero frequency and join the other end with mid-point of class 200 - 210 with zero frequency.			
	The required frequency polygon is shown alongside.			
	15			
	No. of weeks	$2\frac{1}{2}$		
	0 130 140 150 160 170 180 190 200 210			
	Cost of living index			
OR 35.(b) From the data given we plot the histogram as: Represent the lifetime (in hours) in x-axis. Represent the number of lamps in y-axis.				
	Class intervals are from 300-400 till 900-1000 Take "1 unit = 10 lamps" on y-axis as the lowest value of frequency is 14 and the highest is 86.	1/2+1/2		
	Also, since the first interval is starting from 300 and not '0', we show	1/2		

	it by marking a 'kink' or a break on the x-axis.	
	100 90 80 70 60 50 40 30 20 10 300 400 500 600 700 800 900 1000	$2\frac{1}{2}$
	Lifetime (in hours)	
	It can be seen from the above graph that: (ii) The number of neon lamps having their lifetime of more than 700 hours lies in the class intervals $700 - 800$, $800 - 900$, $900 - 1000$. Hence, their corresponding frequencies when added up will be $(74 + 62 + 48) = 184$ lamps.	1
	SECTION E	
36.	(i) $\frac{2}{11} = 0.1818 = 0.\overline{18}$ (ii)Let x= $0.3\overline{8} = 0.38888$ $\Rightarrow 10x = 3.8888$ and $100x = 38.888$ $\Rightarrow 100x - 10x = 38.888$ 3.888	1
	⇒90x= 35	
	$\Rightarrow \mathbf{x} = \frac{35}{90} = \frac{7}{18}$	1
	70 10	
	(iii)Non-terminating repeating	
		1
	(iv) $0.3\overline{8} = \frac{7}{18} = \frac{m}{n}$	1
	∴m+n = 7+18=25	

37.	(i) Given: Temperature = 30°C To find: F = ? We know that, F = (9/5)C + 32 By Substituting the value of C = 30° C in the equation above, F = (9/5)C + 32 = (9/5)30 + 32 = 54 + 32 = 86 Therefore, the temperature in Fahrenheit is 86° F.	1
	(ii) Given, Temperature = 95° F To find, C = ? We know that, F = $(9/5)$ C + 32 By Substituting the value of temperature in the above equation, $95 = (9/5)$ C + 32 $95 - 32 = (9/5)$ C $63 = (9/5)$ C $C = (63 \times 5)/9$ $C = 35$ Therefore, the temperature in Celsius is 35° C.	1
	(iii) We know that, $F = (9/5)C + 32$ If $C = 100^\circ$, then by substituting this value in the above equation, $F = (9/5)100 + 32$ F = 180 + 32 F = 212 Therefore, if $C = 100^\circ$, then $F = 212^\circ$	1
	(iv) We know that, $F = (9/5)C + 32$ Let us consider, $F = C$ By Substituting this value in the equation above, F = (9/5)C + 32 (9/5 - 1)F + 32 = 0 (4/5)F = -32 $F = (-32 \times 5)/4$ Hence, $F = -40$ Yes, there is a temperature, -40° , which is numerically the same for both Fahrenheit and Celsius.	1
38.		

38.	(i) Volume of air stored in a conical tent = Volume of cone= = $\frac{1}{3}\pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times (7)^2 \times 22 \text{ cm}^3 = 1129.33 \text{cm}^3$	
		1
	(ii)The base area covered by the conical tent = $\pi r^2 = \frac{22}{7} \times (7)^2 = 154 \text{cm}^2$	1
	(iii)Slant height of cone = $\sqrt{(7)^2 + (22)^2} = \sqrt{533} = 23.09$ cm	1/2
	CSA of conical tent= $\pi rl = \frac{22}{7} \times 7 \times 23.09 = 507.98 \text{cm}^2$	1
	1cm² is painted for 50 paise or ₹0.5.	
	∴ 507.98 cm ² is painted for ₹507.98× $0.5 = ₹254$	1/2