BSEH Practice Paper (March 2024) (2023-24)**Marking Scheme**

Model Question Paper

SET-A **MATHEMATICS CODE: 835** ⇔ Important Instructions: • All answers provided in the Marking scheme are SUGGESTIVE • Examiners are requested to accept all possible alternative correct answer(s). SECTION – A $(1Mark \times 20Q)$ Q. No. Marks **EXPECTED ANSWERS** Question 1. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$. Choose the correct answer. Solution: 1 (C) $(6, 8) \in \mathbb{R}$ Question 2. $\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$ is equal to: (B) $\frac{\pi}{2}$ Solution: 1 $\begin{array}{cc} \tan\theta & \cot\theta \\ -\cot\theta & \tan\theta \end{array} \right], \ 0 < \theta < \frac{\pi}{2} \ \text{and} \ A + A' = 2I, \ \text{then the value of } \theta \ \text{ is:} \end{array}$ Ouestion 3. If A =1 Solution: (A) Question 4. If a matrix A is both symmetric and skew symmetric, then 1 Solution: **(B)** A is a zero matrix If the vertices of a triangle are (1, 0), (6, 0) and (4, 3), then by using determinants its area is Question 5. Solution: 15 2 1 **(C)** If $y = x \cdot \log x$, then $\frac{d^2 y}{dx^2}$ is equal to: Question 6. 1 Solution: **(A)** The antiderivative of $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$ equals: Ouestion 7. Solution: 1 (C) $\frac{2}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C$ $\int e^{x}(\frac{1}{x}-\frac{1}{x^{2}}) dx$ equals: Question 8. $(\mathbf{B})\frac{1}{\mathbf{x}}\mathbf{e}^{\mathbf{x}}+\mathbf{C}$ Solution: 1 The value of $\int_{-1}^{1} x^5 dx$ is Ouestion 9. (C) 0 Solution: 1 Ouestion 10. The order of the differential equation $2x^2 \frac{d^2y}{dx^2} - 3 \frac{dy}{dx} + y = 0$ is : 1 Solution: (A) 2 Question 11. Which substitution can solve a homogeneous differential equation of the form $\frac{\mathrm{dx}}{\mathrm{dy}} = h(\frac{\mathrm{x}}{\mathrm{y}}) ?$ Solution: Put $\mathbf{x} = \mathbf{v}\mathbf{y}$ 1 The function $f(x) = \begin{cases} \sin x - \cos x & \text{, if } x \neq 0 \\ k & \text{, if } x = 0 \end{cases}$ is continuous at x = 0, then find the Ouestion 12. value of k. Solution: 1 $\lim_{X \to 0} f(x) = \lim_{X \to 0} (\sin x - \cos x) = 0 - 1$ = -1 Since f(x) is continuous at x = 0 $\therefore \lim_{x \to 0} f(x) = f(0)$ $\Rightarrow -1 = k$ If a line has the direction ratios 2, -1, -2, then what are its direction cosines? $\frac{2}{\sqrt{2^2 + (-1)^2 + (-2)^2}}, \frac{-1}{\sqrt{2^2 + (-1)^2 + (-2)^2}}, \frac{-2}{\sqrt{2^2 + (-1)^2 + (-2)^2}}$ Question 13. Solution: 1

	$\Rightarrow \frac{2}{2}, \frac{-1}{2}, \frac{-2}{2}$	
Question 14.	Compute $P(A B)$, if $P(B) = 0.5$, $P(A \cap B) = 0.32$.	
Solution:	$P(A B) = \frac{P(A \cap B)}{P(A \cap B)}$	1
	P(B)	
	$=\frac{1}{0.32}$	
	$P(A B) = \frac{25}{16}$	
Question 15.	Two collinear vectors are always equal in magnitude. (True / False)	
Solution:	False	1
Question 16.	Two events will be independent, if $P(A'B') = [1 - P(A)][1 - P(B)]$. (True / False)	1
Solution:	True The graded life of alteriains on ever prime number on each die, when a pair of	1
Question 17.	dice is rolled is	
Solution:	1/6	1
Question 18.	If $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$, then $ \vec{a} \times \vec{b} = .$	
Solution:	$\sqrt{507}$	
Question 19.	Assertion (A): If R is the relation defined in set $\{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b)\}$	
	$: b = a + 1$ } then R is not an equivalence relation.	
	Reason (R): A relation is said to be an equivalence relation if it is reflexive,	
Solution:	symmetric and transitive.	1
Solution:	(A) both Assertion (A) and Keason (K) are true and Keason (K) is the correct explanation of the Assertion (A)	T
Question 20.	Assertion (A): The lines are $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ are	
	perpendicular, when $\vec{b_1}, \vec{b_2} = 0$.	
	Reason (R): The angle θ between the lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \lambda \vec{a_1}$	
	$\overrightarrow{b_1} \overrightarrow{b_2}$	
	μb_2 is given by $\cos\theta = \frac{1}{ \vec{b_1} \vec{b_2} }$.	
Solution:	(A). Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation a_{1}^{2} (A)	1
	$\frac{\text{SECTION} - B}{\text{SECTION} - B} (2\text{Marks} \times 50)$	
Question 21.	Let L be the set of all lines in a plane and R be the relation in L defined as $R =$	
	$\{(L_1, L_2): L_1 \text{ is perpendicular to } L_2\}$. Show that R is symmetric but neither	
Solution	reflexive nor transitive.	
Solution:	R is not reflexive, as a line L_1 can't be perpendicular to itself, i.e., $(L_1, L_1) \notin R$.	
		1
	R is symmetric as $(\mathbf{L} + \mathbf{L}_2) \in \mathbf{R}$	$\frac{1}{2}$
	R is symmetric as $(L_1, L_2) \in R$ L ₁ is perpendicular to L ₂	<u>1</u> 2
	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1	$\frac{1}{2}$
	$\begin{array}{l} R \text{ is symmetric as } (L_1, L_2) \in R \\ L_1 \text{ is perpendicular to } L_2 \\ \Rightarrow L_2 \text{ is perpendicular to } L_1 \\ \Rightarrow (L_2, L_1) \in R. \qquad \qquad \forall L_1, L_2 \in L \end{array}$	$\frac{1}{2}$
	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R.$ $\forall L_1, L_2 \in L$	$\frac{1}{2}$ $\frac{1}{2}$
	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R.$ $\forall L_1, L_2 \in L$ R is not transitive.	$\frac{1}{2}$ $\frac{1}{2}$
	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R.$ $\forall L_1, L_2 \in L$ R is not transitive. Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_2	$\frac{1}{2}$ $\frac{1}{2}$
	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R.$ $\forall L_1, L_2 \in L$ R is not transitive. Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_3 . In fact, L_1 is parallel to L_3	$\frac{1}{2}$ $\frac{1}{2}$
	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R$. $\forall L_1, L_2 \in L$ R is not transitive. Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_3 . In fact, L_1 is parallel to L_3 i.e., $(L_1, L_2) \in R$, and $(L_2, L_3) \in R$ but $(L_1, L_3) \notin R$.	$\frac{1}{2}$ $\frac{1}{2}$
	$\begin{array}{l} R \text{ is symmetric as } (L_1, L_2) \in R \\ L_1 \text{ is perpendicular to } L_2 \\ \Rightarrow L_2 \text{ is perpendicular to } L_1 \\ \Rightarrow (L_2, L_1) \in R. \qquad \qquad \forall L_1, L_2 \in L \\ \end{array}$ $\begin{array}{l} R \text{ is not transitive.} \\ \text{Indeed, if } L_1 \text{ is perpendicular to } L_2 \text{ and } L_2 \text{ is perpendicular to } L_3, \text{ then } L_1 \text{ can never be perpendicular to } L_3. \\ \text{In fact, } L_1 \text{ is parallel to } L_3 \\ \text{i.e., } (L_1, L_2) \in R, \text{ and } (L_2, L_3) \in R \text{ but } (L_1, L_3) \notin R. \end{array}$	$\frac{1}{2}$ $\frac{1}{2}$
OR	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R.$ $\forall L_1, L_2 \in L$ R is not transitive. Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_3 . In fact, L_1 is parallel to L_3 i.e., $(L_1, L_2) \in R$, and $(L_2, L_3) \in R$ but $(L_1, L_3) \notin R$. Find the value of: $\cos^{-1}(\frac{1}{2}) + 2\sin^{-1}(\frac{1}{2})$	$\frac{1}{2}$ $\frac{1}{2}$ 1
OR Question 21.	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R.$ $\forall L_1, L_2 \in L$ R is not transitive. Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_3 . In fact, L_1 is parallel to L_3 i.e., $(L_1, L_2) \in R$, and $(L_2, L_3) \in R$ but $(L_1, L_3) \notin R$. Find the value of: $\cos^{-1}(\frac{1}{2}) + 2\sin^{-1}(\frac{1}{2})$	$\frac{1}{2}$ $\frac{1}{2}$ 1
OR Question 21. Solution:	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R.$ $\forall L_1, L_2 \in L$ R is not transitive. Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_3 . In fact, L_1 is parallel to L_3 i.e., $(L_1, L_2) \in R$, and $(L_2, L_3) \in R$ but $(L_1, L_3) \notin R$. Find the value of: $\cos^{-1}(\frac{1}{2}) + 2\sin^{-1}(\frac{1}{2})$ Let $\cos^{-1}(\frac{1}{2}) = x$. Then $\cos x = 1/2 = \cos(\pi/3)$	$\frac{\frac{1}{2}}{\frac{1}{2}}$
OR Question 21. Solution:	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R$. $\forall L_1, L_2 \in L$ R is not transitive. Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_3 . In fact, L_1 is parallel to L_3 i.e., $(L_1, L_2) \in R$, and $(L_2, L_3) \in R$ but $(L_1, L_3) \notin R$. Find the value of: $\cos^{-1}(\frac{1}{2}) + 2\sin^{-1}(\frac{1}{2})$ Let $\cos^{-1}(\frac{1}{2}) = x$. Then $\cos x = 1/2 = \cos (\pi/3)$ $\cos^{-1}(\frac{1}{2}) = \pi/3$	$\frac{\frac{1}{2}}{\frac{1}{2}}$
OR Question 21. Solution:	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R$. $\forall L_1, L_2 \in L$ R is not transitive. Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_3 . In fact, L_1 is parallel to L_3 i.e., $(L_1, L_2) \in R$, and $(L_2, L_3) \in R$ but $(L_1, L_3) \notin R$. Find the value of: $\cos^{-1}(\frac{1}{2}) + 2\sin^{-1}(\frac{1}{2})$ Let $\cos^{-1}(\frac{1}{2}) = x$. Then $\cos x = 1/2 = \cos (\pi/3)$ $\cos^{-1}(\frac{1}{2}) = \pi/3$	$\frac{\frac{1}{2}}{\frac{1}{2}}$
OR Question 21. Solution:	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R.$ $\forall L_1, L_2 \in L$ R is not transitive. Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_3 . In fact, L_1 is parallel to L_3 i.e., $(L_1, L_2) \in R$, and $(L_2, L_3) \in R$ but $(L_1, L_3) \notin R$. Find the value of: $\cos^{-1}(\frac{1}{2}) + 2\sin^{-1}(\frac{1}{2})$ Let $\cos^{-1}(\frac{1}{2}) = x$. Then $\cos x = 1/2 = \cos (\pi/3)$ $\cos^{-1}(\frac{1}{2}) = \pi/3$ Let $\sin^{-1}(\frac{1}{2}) = y$. Then, $\sin y = 1/2 = \sin(\pi/6)$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
OR Question 21. Solution:	R is symmetric as $(L_1, L_2) \in R$ L_1 is perpendicular to L_2 $\Rightarrow L_2$ is perpendicular to L_1 $\Rightarrow (L_2, L_1) \in R$. $\forall L_1, L_2 \in L$ R is not transitive. Indeed, if L_1 is perpendicular to L_2 and L_2 is perpendicular to L_3 , then L_1 can never be perpendicular to L_3 . In fact, L_1 is parallel to L_3 i.e., $(L_1, L_2) \in R$, and $(L_2, L_3) \in R$ but $(L_1, L_3) \notin R$. Find the value of: $\cos^{-1}(\frac{1}{2}) + 2\sin^{-1}(\frac{1}{2})$ Let $\cos^{-1}(\frac{1}{2}) = x$. Then $\cos x = 1/2 = \cos (\pi/3)$ $\cos^{-1}(\frac{1}{2}) = \pi/3$ Let $\sin^{-1}(\frac{1}{2}) = y$. Then, $\sin y = 1/2 = \sin(\pi/6)$ $\sin^{-1}(\frac{1}{2}) = \pi/6$	$\frac{\frac{1}{2}}{\frac{1}{2}}$

	Now		
	$\cos^{-1}(1/2) + 2\sin^{-1}(1/2) = \pi/3 + (2\pi)/6$	1	
	$= \pi/3 + \pi/3$ = $(2\pi)/3$		
Question 22.	Find the value of a, b, c, and d from the equations:		
	$\begin{bmatrix} a-b & 2a+c \\ 2a-b & 2a+c \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 12 \end{bmatrix}$		
Solution:	Equate the corresponding elements of the matrices:		
	$a - b = -1 \dots (1)$ $2a + c = 5 \dots (2)$	1	
	2a - b = 0(3) $3c + d = 13$ (4)	$\frac{1}{2}$	
	Equation (1) -Equation (3)		
	$-a = -1 \Longrightarrow a = 1$	$\frac{1}{2}$	
	Equation (1) \Rightarrow 1 - b = - 1 \Rightarrow b = 2		
	Equation (2) $\Rightarrow 2(1) + c = 5 \Rightarrow c = 3$		
	Equation (4) \Rightarrow 3(3) + d = 13 \Rightarrow d = 4		
	Therefore, $a = 1$, $b = 2$, $c = 3$ and $d = 4$	1	
Question 23.	Find the value of k so that the function is continuous at the indicated point $f(x) = \begin{cases} kx + 1, & x \le 5 \\ 3x - 5, & x > 5 \end{cases}$ at x = 5.		
Solution:	(3x - 3, x - 3)		
	Given function is $f(x) = \begin{cases} xx + 1, & x \le 3\\ 3x - 5, & x > 5 \end{cases}$		
	When $x < 5$, $f(x) = kx + 1$: A polynomial is continuous at each point $x < 5$		
	When $x > 5$, $f(x) = 3x-5$: A polynomial is continuous at each point $x > 5$	$\frac{1}{2}$	
	Now $f(5) = 5k + 1$	2	
	$\lim_{x \to 5} f(x) = \lim_{h \to 0} f(5+h) = 3(5+h) - 5 = 15 + 3h - 5$		
	$= \lim_{h \to 0} 10 + 3h = 10 + 3(0) = 10 \qquad \dots (1)$		
	$\lim_{x \to 5} f(x) = \lim_{h \to 0} f(5 - h) = k(5 - h) + 1$		
	$= \lim_{h \to 0} (5k - hk + 1) = 5k + 1 \qquad \dots (2)$	1	
	Since function is continuous, therefore, both the equations are equal, Equate both the equations and find the value of k,		
	10 = 5k + 1 5k = 9 k = 9/5	$\frac{1}{2}$	
Question 24.	Verify that the function $y = x \sin 3x$, is a solution of the differential equation $\frac{d^2y}{dx^2} + 9y - 6\cos 3x = 0$		
Solution:	Given: $y = x \sin 3x$		
	Diff. w.r.t. 'x', and we get		

	$\frac{dy}{dx} = \sin 3x + 3x \cos 3x \qquad \dots (1)$	$\frac{1}{2}$
	Again differentiate (1) w.r.t. 'x', we get	
	$\frac{d^2y}{dx^2} = 3\cos 3x + 3\left[\cos 3x + x\ (-\sin 3x).\ 3\right]$	
	On simplifying the above equation, we get	
	$\frac{d^2 y}{dx^2} = 6\cos 3x - 9x\sin 3x \qquad(2)$	$\frac{1}{2}$
	Now, substitute (1) and (2) in the given differential equation, and we get the following:	
	$L.H.S = \frac{d^2y}{dx^2} + 9y - 6\cos 3x$	
	$= (6\cos 3x - 9x\sin 3x) + 9(x\sin 3x) - 6\cos 3x$	
	$= 6\cos 3x - 9x\sin 3x + 9x\sin 3x - 6\cos 3x$	1
	= 0 = R.H.S	
	As L.H.S = R.H.S, the given function is the solution of the corresponding differential equation.	
OR Ouestion 24	Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+y^2}$	
Solution:	Since $1 + y^2 \neq 0$, therefore separating the variables, the given differential equation	
	$\frac{dy}{1+y^2} = \frac{dy}{1+x^2} \qquad \dots \dots (1)$	$\frac{1}{2}$
	Integrating both sides of equation (1), we get	
	$\int \frac{\mathrm{d}y}{1+y^2} = \int \frac{\mathrm{d}y}{1+x^2}$	
	$\tan^{-1}y = \tan^{-1}x + C$	$1\frac{1}{2}$
	which is the general solution of equation (1)	
Question 25.	Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both balls are red.	
Solution:	Total number of balls = 10 black balls + 8 red balls = 18 balls	
	Probability of getting a red ball in the first draw $=\frac{8}{18}=\frac{4}{9}$	$\frac{1}{2}$
	As the ball is replaced after the first throw,	
	:. Probability of getting a red ball in the second draw $=\frac{8}{18}=\frac{4}{9}$ Since the two balls are drawn with replacement, the two draws are independent.	$\frac{1}{2}$
	P(both balls are red) = P(first ball is red) x P(second ball is red)	
	Now, the probability of getting both balls red = $\frac{4}{9} \times \frac{4}{9} = \frac{16}{81}$	1

	SECTION – C (3Marks × 8Q)	
Question 26.	Let $A = \mathbf{R} - \{3\}$ and $\mathbf{B} = \mathbf{R} - \{1\}$. Consider the function $f : A \rightarrow B$ defined by	
	$f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one one and onto? Justify your answer.	
Solution:	$A = R - \{3\}$ and $B = R - \{1\}$	
	f: A \rightarrow B defined by f(x) = (x - 2) / (x - 3) Let (x, y) \subset A then	
	$f(x) = \frac{(x-2)}{x}$ and $f(y) = \frac{(y-2)}{x}$	
	(x-3) and $(y) = (y-3)$	
	For $f(x) = f(y)$	1
	$\frac{(x-2)}{(x-2)} = \frac{(y-2)}{(x-2)}$	2
	$ (x-3) (y-3) \\ (x-2)(y-3) = (y-2)(x-3) $	
	x y - 3x - 2y + 6 = xy - 3y - 2x + 6	
	-3x - 2y = -3y - 2x -3x + 2x3y + 2y	
	$-\mathbf{x} = -\mathbf{y}$	
	x = y Therefore, f is a one one function	1
	Therefore, T is a one-one function.	-
	Again, $y = f(x) = \frac{(x-2)}{(x-2)}$	
	$\mathbf{v} = \frac{(\mathbf{x} - \mathbf{z})}{\mathbf{z}}$	
	y'(x-3) = x - 2	1
	$\begin{array}{l} y(x) = y(x) \\ xy - 3y = x - 2 \end{array}$	2
	x(y-1) = 3y - 2	
	or $x = \frac{(3y-2)}{(y-1)}$	
	Now, $f(\frac{3y-2}{y-1}) = \frac{3y-2}{y-2} = 2$	
	$\Rightarrow \frac{y-1-2}{3y-2-3} = y$	
	$\int_{y-1}^{y-1} \int_{y-1}^{y-1} f(x) = y$	
	Therefore, f is onto function.	1
	1 2x 1 x ²	
Question 26.	$\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y}{1+y^2} \right], \ x < 1, \ y > 0 \ \text{and} \ xy < 1$	
Solution:	Put $x = tan\theta$ and $y = tan\phi$, we have	$\frac{1}{2}$
	$\tan\frac{1}{2}\left[\sin^{-1}\left(\frac{2\tan\theta}{1+\tan^{2}\theta}\right)+\cos^{-1}\left(\frac{1-\tan^{2}\phi}{1+\tan^{2}\phi}\right)\right]$	
	$= \tan \frac{1}{2} \left[\sin^{-1} \sin 2\theta + \cos^{-1} \cos 2\phi \right]$	
	$=\tan\frac{1}{2}\left[2\theta+2\phi\right]$	
	$= \tan(\theta + \phi)$	$1\frac{1}{2}$
	$\tan \theta + \tan \phi$	
	$=\frac{1}{1-\tan\theta\tan\phi}$	
		1

	$=\frac{\mathbf{x}+\mathbf{y}}{1-\mathbf{x}\mathbf{y}}$	
Question 27.	Find X and Y, if $2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix}$	
Solution:	$2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} \qquad \dots (1)$	
	$3X + 2Y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix} \qquad \dots (2)$	
	Multiply equation (1) by 2,	
	$4X + 6Y = 2\begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 8 & 0 \end{bmatrix} \qquad \dots (3)$	
	Multiply equation (2) by 3	
	$9X + 6Y = 3\begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} 6 & -6 \\ -3 & 15 \end{bmatrix}$ (4)	1
	Subtract equation (4) from (3)	
	$-5X = \begin{bmatrix} 4 & 6 \\ 8 & 0 \end{bmatrix} - \begin{bmatrix} 6 & -6 \\ -3 & 15 \end{bmatrix} = \begin{bmatrix} -2 & 12 \\ 11 & -15 \end{bmatrix}$	
	$X = -\frac{1}{5} \begin{bmatrix} -2 & 12\\ 11 & -15 \end{bmatrix}$	
	$\mathbf{X} = \begin{bmatrix} 2/5 & -12/5 \\ -11/5 & 3 \end{bmatrix}$	1
	Substitute this value of X in equation (1)	
	$2\begin{bmatrix} 2/5 & -12/5 \\ -11/5 & 3 \end{bmatrix} + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}$	
	$3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} 4/5 & -24/5 \\ -22/5 & 6 \end{bmatrix}$	
	$Y = 1/3 \begin{bmatrix} 6/5 & 39/5 \\ 42/5 & -6 \end{bmatrix}$	
	$Y = \begin{bmatrix} 2/5 & -8/5 \\ 14/5 & -2 \end{bmatrix}$	
		1
Question 28.	Find $\frac{dy}{dx}$ of the function $y^x = x^y$	
Solution:	Given: $y^x = x^y$	
	$x^{y} = y^{x}$	
	$log(x^y) = log(y^x)$	
	$y.\log x = x.\log y$	1
	$\frac{d}{dx}(y.\log x) = \frac{d}{dx}(x.\log y)$	
	y. $\frac{1}{x}$ + log x. $\frac{dy}{dx}$ = x. $\frac{1}{y}$. $\frac{dy}{dx}$ + log y.1	

	$(\log x - \frac{x}{y}) \cdot \frac{dy}{dx} = \log y - \frac{x}{y}$	$1\frac{1}{2}$
	$\left(\frac{(y\log(x) - x)}{y}\right)\frac{dy}{dx} = \frac{(x\log(y) - y)}{x}$	
	$\frac{dy}{dx} = \frac{y(x \log(y) - y)}{x(y \log(x) - x)}$	$\frac{1}{2}$
Question 29.	Find the intervals in which the function f is given by	
Solution:	$\begin{array}{l} f(x) = 2x^{2} - 3x^{2} - 36x + 7 \text{ is strictly increasing or strictly decreasing.} \\ \hline \text{Given function: } f(x) = 2x^{3} - 3x^{2} - 36x + 7 \\ \hline \text{Diff. w.r.t. 'x'} \\ f'(x) = 6x^{2} - 6x + 36 = 6(x^{2} - x - 6) \end{array}$	
	$f'(x) = 6(x - 3)(x + 2) \qquad ,(1)$ Now for increasing or decreasing, $f'(x) = 0$ 6(x - 3)(x + 2) = 0 $x - 3 = 0 \qquad \text{or} \qquad x + 2 = 0$	
	x = 3 or x = -2 Therefore, we have sub-intervals are $(-\infty, -2)$, $(-2, 3)$ and $(3, \infty)$	1
	For interval $(-\infty, -2)$, picking x = -3, from equation (1), f' (x) = $(+ve)(-ve)(-ve) = (+ve) > 0$ Therefore, f is strictly increasing in $(-\infty, -2)$	$\frac{1}{2}$
	For interval (-2, 3), picking $x = 0$, from equation (1), f'(x) = (+ve)(-ve) (+ve) = (-ve) < 0 Therefore, f is strictly decreasing in (-2, 3).	$\frac{1}{2}$
	For interval $(3, \infty)$, picking $x = 4$, from equation (1), f' $(x) = (+ve)(+ve)(+ve) = (+ve) > 0$ Therefore, is strictly decreasing in $(3, \infty)$.	$\frac{1}{2}$
	So, f is strictly increasing in $(-\infty, -2)$ and $(3, \infty)$. f is strictly decreasing in $(-2, 3)$.	$\frac{1}{2}$
Question 30.	Integrate: $\int x^2 \log x dx$	
Solution:	It is given that $I = \int x^2 .\log x dx$	
	Here by taking x as first function and x ² as second function. Now integrating by	
	parts we get $I = \log x \int x^2 dx - \int \{ \frac{d}{dx} (\log x) . \int x^2 dx \} . dx$	$\frac{1}{2}$
	So we get $3 + 1 + x^3$	
	$= \log(x) \cdot \frac{x^3}{3} - \int \frac{1}{x} \cdot \frac{x^3}{3} dx$	1
	By multiplying the terms	
	$=\frac{x^3 \log x}{3} - \int \frac{x^2}{3} dx$	
	It can be written as	
	$= \frac{x^3 . \log x}{3} - \frac{x^3}{9} + C$	$1\frac{1}{2}$
OR Question 30	Evaluate: $\int_{-5}^{5} \mathbf{x} + 2 d\mathbf{x}$	

Solution:	$I = \int_{-1}^{5} x + 2 dx$	
	We know $ x+2 = \begin{cases} -(x+2), & x \le -2\\ (x+2), & x \ge -2 \end{cases}$	$\frac{1}{2}$
	$I = \int_{-5}^{-2} x + 2 dx + \int_{-2}^{5} x + 2 dx$	
	$I = \int_{-5}^{-2} -(x+2) dx + \int_{-2}^{5} (x+2) dx$	
	$\mathbf{I} = \left \frac{-(x+2)^2}{2} \right _{-5}^{-2} + \left \frac{(x+2)^2}{2} \right _{-2}^{5}$	$1\frac{1}{2}$
	$\mathbf{I} = \left(\frac{-(0)^2}{2} - \frac{-(-3)^2}{2}\right) + \left(\frac{(7)^2}{2} - \frac{(0)^2}{2}\right)$	
	$I = \frac{9}{2} + \frac{49}{2}$	
	I = 29	1
Question 31.	The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5k$ and $\hat{i} - 2\hat{j} - 3k$. Find the unit vector parallel to its diagonal	
Solution:	Adjacent sides of a parallelogram are given as:	
	$\vec{a} = 2\hat{\imath} - 4\hat{\jmath} + 5\hat{k}$ and $\vec{b} = \hat{\imath} - 2\hat{\jmath} - 3\hat{k}$	
	We know that, the diagonal of a parallelogram is given by $\vec{a} + \vec{b}$	
	$\vec{a} + \vec{b} = (2+1)\hat{\imath} + (-4-2)\hat{\jmath} + (5-3)\hat{k} = 3\hat{\imath} - 6\hat{\jmath} + 2\hat{k}$	1
	$ \vec{a} + \vec{b} = \sqrt{(3)^2 + (-6)^2 + (2)^2}$	1
	Hence, the unit vector parallel to the diagonal is	
	$\frac{\vec{a} + \vec{b}}{ \vec{a} + \vec{b} } = \frac{3\hat{\imath} - 6\hat{\jmath} + 2k}{\sqrt{(3)^2 + (-6)^2 + (2)^2}}$	
	$=\frac{3\hat{\iota}-6\hat{j}+2\hat{k}}{\sqrt{9+36+4}}$	
	$=\frac{3\hat{\iota}-6\hat{j}+2\hat{k}}{7}$	
	$=\frac{3}{7}\hat{\iota} - \frac{6}{7}\hat{j} + \frac{2}{7}\hat{k}$	1
	SECTION – C (5Marks × 4Q)	
Question 32.	If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, find A^{-1} . Using A^{-1} solve the system of equations	
	2x - 3y + 5z = 11 3x + 2y - 4z = -5	
	3x + 2y - 4z = -3 x + y - 2z = -3	
Solution:		
	$\begin{vmatrix} A = \begin{bmatrix} 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$	
	A = 2(-4 + 4) + 3(-6 + 4) + 5(3 - 2) = 2(0) + 3(-2) + 5(1) = -6 + 5	1
	$= -1 \neq 0$; Inverse of matrix exists.	

Find the inverse of matrix: Cofactors of matrix: $A_{11} = 0$, $A_{12} = 2$, $A_{13} = 1$ $A_{21} = -1, \quad A_{22} = -9, \quad A_{23} = -5$ $A_{31} = 2$, $A_{32} = 23$, $A_{33} = 13$ $adj.A = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix}$ $1\frac{1}{2}$ So. $A^{-1} = \frac{1}{-1} \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}$ 1 Now, matrix of equations can be written as: AX=B $\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 11 \\ -5 \\ 2 \end{bmatrix}$ And, $X = A^{-1} B$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$ $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Therefore, x = 1, y = 2 and z = 3. $1\frac{1}{2}$ Question 33. Find the shortest distance between the lines l_1 and l_2 whose vector equations are $\vec{r} = \hat{\imath} + \hat{\jmath} + \lambda (2\hat{\imath} - \hat{\jmath} + \hat{k})$ and $\vec{r} = 2\hat{\imath} + \hat{\jmath} - \hat{k} + \mu(3\hat{\imath} - 5\hat{\jmath} + 2\hat{k})$ $\vec{r} = \hat{\imath} + \hat{\jmath} + \lambda(2\hat{\imath} - \hat{\jmath} + \hat{k})$...(1) Solution: $\vec{r} = 2\hat{\imath} + \hat{\jmath} - \hat{k} + \mu(3\hat{\imath} - 5\hat{\jmath} + 2\hat{k})$ and Comparing (1) and (2) with $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ respectively, we get $\overrightarrow{a_1} = \hat{\imath} + \hat{\jmath}$, and $\overrightarrow{b_1} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$ $\overrightarrow{a_2} = 2\hat{\imath} + \hat{\jmath} - \hat{k}$ and $\overrightarrow{b_2} = 3\hat{\imath} - 5\hat{\jmath} + 2\hat{k}$ 1 Therefore $\overrightarrow{a_2} - \overrightarrow{a_1} = \hat{\iota} - \hat{k}$ $\frac{1}{2}$ and $\overrightarrow{b_1} \times \overrightarrow{b_2} = (2\hat{\imath} - \hat{\jmath} + \hat{k}) \times (3\hat{\imath} - 5\hat{\jmath} + 2\hat{k})$

	$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -5 & 2 \end{vmatrix} = 3\hat{i} - \hat{j} - 7\hat{k}$	$1\frac{1}{2}$
	$ \overrightarrow{b_1} \times \overrightarrow{b_2} = \sqrt{9 + 1 + 49} = \sqrt{59}$	1
	Hence, the shortest distance between the given lines is given by	
	$D = \frac{ (\overrightarrow{a_2} - \overrightarrow{a_1}).(\overrightarrow{b_1} \times \overrightarrow{b_2}) }{ \overrightarrow{b_1} \times \overrightarrow{b_2} } = \frac{ 3 - 0 + 7 }{\sqrt{59}} = \frac{10}{\sqrt{59}}$	1
OR Question 33.	Find the vector equation of the line passing through the point (1,2,-4) and perpendicular to the two lines : $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7} \text{ and } \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$	
Solution:	The vector equation of a line passing through a point with position vector \vec{a} and parallel to \vec{b} is $\vec{r} = \vec{a} + \lambda \vec{b}$. It is given that, the line passes through (1, 2, -4)	
	So, $\vec{a} = 1\hat{\imath} + 2\hat{\jmath} - 4\hat{k}$	
	Given lines are $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$	1
	It is also given that, line is perpendicular to both given lines. So we can say that the line is perpendicular to both parallel vectors of two given lines.	
	We know that, $\vec{a} \times \vec{b}$ is perpendicular to both $\vec{a} & \vec{b}$, so let \vec{b} is cross product of parallel vectors of both lines i.e. $\vec{b} = \vec{b_1} \times \vec{b_2}$ where $\vec{b_1} = 3\hat{i} - 16\hat{j} + 7\hat{k}$ and $\vec{b_2} = 3\hat{i} - 8\hat{j} - 5\hat{k}$	2
	and Required Normal $\vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}$	
	$=\hat{\imath}(80-56)-\hat{\jmath}(-15-21)+\hat{k}(24+48)$	1
	$\vec{b} = 24\hat{\imath} + 36\hat{\jmath} + 72\hat{k}$	
	Now, by substituting the value of $\vec{a} \& \vec{b}$ in the formula $\vec{r} = \vec{a} + \lambda \vec{b}$, we get	
	$\vec{r} = (1\hat{\imath} + 2\hat{\jmath} - 4\hat{k}) + \lambda(24\hat{\imath} + 36\hat{\jmath} + 72\hat{k})$	1
Question 34.	Find the area of the region bounded by the curve $y^2 = x$ and the lines $x = 1$, $x = 4$ and x-axis in the first quadrant.	
Solution:	Equation of the curve is $y^2 = x$. It is a rightward parabola having vertex at origin and symmetrical about x-axis. x = 1 and x = 4 are two straight lines parallel to y-axis. $y = \sqrt{x}$ (1) x = 1 and x = 4	
	Points of intersections of given curves	
	At $x = 1$, $y = \sqrt{1} = \pm 1$ points are (1, 1) (1, -1) At $x = 4$, $y = \sqrt{4} = \pm 2$ points are (4, 2) (4, -2) \therefore points in first quadrant A(1, 1) B(4, 2) C(4, 0), D(1, 0)	$1\frac{1}{2}$
	Make a rough hand sketch of given curves by taking some corresponding values	

	of x and y.	
	$x \leftarrow 0 \qquad figure (1)$ Required area is shaded region ABCD: $ _{1}\int^{4} y dx = _{1}\int^{4}\sqrt{x} dx $ [From equation (1)]	1
	$= 1 ^4 x^{1/2} dx $	
	$ \frac{x^{3/2}}{3/2} _{1}^{4}$ $=\frac{2}{3} (4^{3/2}-1^{3/2}) $	$1\frac{1}{2}$
	$=\frac{2}{3} (8-1) =\frac{2}{3}(7)=\frac{14}{3}$ sq. units	1
OR Oraction 24	Find the area of the region bounded by the ellipse $\frac{x^2}{x} + \frac{y^2}{x} = 1$	
Solution:	Here $\frac{x^2}{16} + \frac{y^2}{9} = 1$ (1) It is a horizontal ellipse having center at origin and is symmetrical about both axes (if we change y to -y or x to -x, equation remain same). Standard equation of an ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ By comparing, $a = 4$ and $b = 3$	$\frac{1}{2}$
	From equation (1) $\Rightarrow y^{2} = \frac{9}{16}(16 - x^{2})$ $\Rightarrow y = \frac{3}{4}\sqrt{16 - x^{2}} \qquad \dots (2)$ Points of Intersections of ellipse (1) with x-axis (y = 0) Put y = 0 in equation (1), we have $x^{2}/16 = 1$ $\Rightarrow x^{2} = 16$ $\Rightarrow x = \pm 4$ Therefore, Intersections of ellipse(1) with x-axis are (0, 4) and (0, -4). Now again, Points of Intersections of ellipse (1) with y-axis (x = 0) Putting x = 0 in equation (1), y^{2}/9 = 1	1
	$\Rightarrow y^2 = 9$ $\Rightarrow y = \pm 3.$	

	Therefore, Intersections of ellipse (1) with y-axis are $(0, 3)$ and $(0, -3)$.	
	for arc of ellipse in first quadrant.	
	$X' = \frac{5}{-5} + \frac{4}{3} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} $	1
	Now, Area of region bounded by ellipse (1) Total shaded area = 4 x Area OAB of ellipse in first quadrant	1 2
	=4 $\int_0^4 y dx$ [: at end B of arc AB of ellipse: x=0 and at end A of arc AB; x=4]	
	$=4 \int_{0}^{4} \frac{3}{4} \sqrt{16 - x^{2}} dx = 3 \int_{0}^{4} \sqrt{4^{2} - x^{2}} dx $	1
	$=3\left \frac{x}{2}\sqrt{4^{2}-x^{2}}+\frac{x}{2}\sin^{-1}\frac{x}{4}\right _{0}^{4} [\because]\sqrt{a^{2}-x^{2}} dx = \frac{x}{2}\sqrt{a^{2}-x^{2}}+\frac{x}{2}\sin^{-1}\frac{x}{a}]$ $3[((4/2)\sqrt{16-16} + 8\sin^{-1}1) - (0+8\sin^{-1}0)] = 3[0 + (8\pi/2)]$	
	$=3(4\pi)=12\pi$ sq. units	1
Question 35.	Solve the following problem graphically: Minimise and Maximise $Z = 3x + 9y$ Subject to the constraints: $x + 3y \le 60$ $x + y \ge 10$ $x \le y$ $x \ge 0, y \ge 0$	
Solution:	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	First of all, let us graph the feasible region of the system of linear inequalities (2) to (5). Let $Z=3x + 9y$ (1) Converting inequalities to equalities	
	$\begin{array}{c c} x + 3y = 60 \\ \hline \hline X & 0 & 60 \\ \hline Y & 20 & 0 \\ \hline \end{array}$	
	Points are $(0, 20)$, $(60,0)$	
	to (5). Let $Z= 3x + 9y$ (1) Converting inequalities to equalities x + 3y = 60 $\boxed{\begin{array}{c} X & 0 & 60 \\ \hline Y & 20 & 0 \end{array}}$ Points are (0, 20), (60,0)	

Therefore area lies towards the $\frac{1}{2}$	origin from this line.	
x + y - 10		
x = 0 10		
y 10 0		
Points are (0, 10), (10, 0)		
Now put $(0, 0)$ in inequation (3)).	
we find $0 \ge 10$, which is False	· ·	
Therefore area lies away from the	he origin from this line.	
$\mathbf{x} - \mathbf{y} = 0$		
X 0 10 20		
y 0 10 20		
Points are (0,0),(10,10),(20,20)		
Now put (1, 0) in inequation (4)),	
we find $1 \ge 0$, which is false.		
Therefore area lies away from the	ne (1, 0) from this line.	
Plot the graph for the set of poir	nts	
70-		
60 -		
50 - 40 -	1 = 1	
30-		
x + y = 10	50 / 0 = 90 = 50 x + 3y = 60	
To find maximum and minimum The feasible region ABCD is st	n nown in the figure. Note that the region is	
bounded. The coordinates of the	e corner points A, B, C and D are $(0, 10)$, $(5, 5)$,	
(15, 15) and (0, 20) respectively Corner Point	7. Corresponding Value of	
	Z = 3 x + 9 y	
A (0, 10)	90	
B (5, 5)	60←Minimum	
C (15, 15)	180←Maximum	
D (0, 20)	180 (Multiple optimal solutions)	

the feasible region. The maximum value of Z on the feasible region occurs at the two corner points C (15, 15) and D (0, 20) and it is 180 in each case.

 $\frac{1}{2}$

	SECTION – E (4Marks × 3Q)	
Question 36.	The proportion of a river's energy that can be obtained from an undershot water wheel is $E(x) = 2x^3 - 4x^2 + 2x$, units where x is the speed of the water wheel relative to the speed of the river. <i>Based on the above information answer the following</i> : (i) Find the maximum value of $E(x)$ in the interval [0, 1]. (2) (ii) What is the speed of water wheel for maximum value of $E(x)$? (1) (iii) Does your answer agree with Mill wrights rule that the speed of wheel should be about one-third of the speed of the river? (1)	
Solution:	(i) We have, $E(x) = 2x^3 - 4x^2 + 2x$ (1) Differentiating equation (1) w.r.t. x $E'(x) = 6x^2 - 8x + 2$ (2) For maximum or minimum value of $E(x)$, $E'(x) = 0$ we have $6x^2 - 8x + 2 = 0$ $3x^2 - 4x + 1 = 0$ (3x - 1) (x - 1) = 0 i.e. $x = 1/3$, $x = 1$ Differentiating equation (2) w.r.t. x E''(x) = 12x - 8 Now, At $x = 1$ $E''(x) = 12(1) - 8 = 4 = +ve$ At $x = 1/3$ $E''(x) = 12(1/3) - 8 = -4 = -ve$ $\Rightarrow E(x)$ has maximum value at $x = 1/3$ Maximum value $= E(1/3) = 2(1/3)^3 - 4(1/3)^2 + 2(1/3)$ = 2/27 - 4/9 + 2/3 = 8/27	1
	(ii) Speed for the Maximum value of $E(x)$ is $\frac{1}{3}$ units.	1
	(iii) Yes	1
Question 37.	A linear differential equation is of the form $\frac{dy}{dx} + Py = Q$, where P, Q are functions of x, then such equation is known as linear differential equation. Its solution is given by $y.(IF.) = \int Q(IF.) dx + c$, where I.F.(Integrating Factor) $= e^{\int Pdx}$ Now, suppose the given equation is $xdy + ydx = x^3 dx$ <i>Based on the above information, answer the following questions:</i> (i)What are the values of P and Q respectively? (1) (ii) What is the value of I.F.? (1) (iii) Find the Solution of given equation. (2)	

Solution:	(i) Given equation is $x.dy + y.dx = x^3 dx$	
	Dividing on both side by dx, we have $\frac{dy}{dx}$	
	$x \frac{dy}{dx} + y = x^3$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x}y = x^2$	
	$\Rightarrow P = \frac{1}{x}, Q = x^2$	1
	(ii) $\mathbf{L} \mathbf{E} \left(\mathbf{L} \mathbf{A} \right) = \mathbf{E} \left(\mathbf{E} \mathbf{A} \right) = \mathbf{E} \left(\mathbf{P} \mathbf{A} \right)$	
	(ii) I.F.(Integrating Factor) = $e^{j + \alpha x}$	
	$-e^{\int \frac{1}{x} dx}$	1
	$= e^{\log x}$	
	- X	
	(iii) Solution of given equation is	
	$y_{1}(1F_{1}) = \int Q(1F_{1}) dx + c$	
	$y(x) = \int x^2(x) dx + c$	
	$xy = \int x^3 dx + c$	
	$xy = \frac{x^4}{2} + c$	2
	$xy = \frac{1}{4} + c$	2
Question 38.	Ratna has two boxes I and II. Box I contains 3 red and 6 black balls. Box II	
	contains 5 red and 5 black balls. Her friend Shivani selects one of the two boxes	
	randomly and draws a ball out of it. The ball drawn by Shivani is found to be red. Let E_1 , E_2 and A denote the following events:	
	E_1 : Box I is selected by Shiavni.	
	E_2 : Box II is selected by Shiavni.	
	A : Red ball is drawn by Shivani. (a) Find $P(F_{a})$ and $P(F_{a})$ (1)	
	(a) Find $P(E_1)$ and $P(E_2)$ (1) (b) Find $P(A E_1)$ and $P(A E_2)$ (1)	
	(c) Find $P(E_2 A)$ (2)	
Solution		
Solution.	(a) $P(E_1)$: Probability of selecting Box I by Shiavni = $\frac{1}{2}$	1
	$P(E_1)$: Probability of selecting Box I by Shiavni = $\frac{1}{2}$	1
	(b) $P(A E_1) = Probability of selecting a red ball when box I has been already$	
	selected = $\frac{3}{2}$	
	$P(A E_2) = Probability of selecting a red ball when box II has been already$	
	selected = $\frac{5}{10}$	1
	(c) $P(E_2 \mid A) - Probability$ that a red ball is drawn from the box II	
	$(C) \Gamma(L_2 R) = \Gamma(C) a C (C) C (C$	
	By Bayes' Theorem	
	$P(E_2).P(A E_2)$	
	$P(E_2 A) = \frac{P(E_1) \cdot P(A E_1) + P(E_2) \cdot P(A E_2)}{P(E_1) \cdot P(A E_1) + P(E_2) \cdot P(A E_2)}$	

$$P(E_2 | A) = \frac{\frac{1}{2} \cdot \frac{5}{10}}{\frac{1}{2} \cdot \frac{3}{9} + \frac{1}{2} \cdot \frac{5}{10}}$$

$$P(E_2 | A) = \frac{\frac{1}{4}}{\frac{1}{6} + \frac{1}{4}}$$

$$P(E_2 | A) = \frac{\frac{1}{4}}{\frac{4+6}{24}} = \frac{1}{4} \times \frac{24}{10} = \frac{3}{5}$$
2