	BSEH Practice Paper (March 2024) (2023-24) Marking Scheme Model Question Paper SET-	
\Rightarrow Important Instructions: \bullet All answers provided in the Marking scheme are SUGGESTIVE		
	SECTION - A (1Mark $\times 20 \mathrm{Q}$)	
Q. No.	EXPECTED ANSWERS	Marks
Question 1.	Let R be the relation in the set \mathbf{N} given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}=\mathrm{b}-2, \mathrm{~b}>6\}$. Choose the correct answer.	
Solution:	(C) $(6,8) \in R$	1
Question 2.	$\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$ is equal to:	
Solution:	(B) $\frac{\pi}{6}$	
Question 3.	If $A=\left[\begin{array}{rr}\tan \theta & \cot \theta \\ -\cot \theta & \tan \theta\end{array}\right], 0<\theta<\frac{\pi}{2}$ and $\mathrm{A}+\mathrm{A}^{\prime}=2 \mathrm{I}$, then the value of θ is:	
Solution:		1
Question 4.	If a matrix A is both symmetric and skew symmetric, then	
Solution:	(B) A is a zero matrix If the vertices of a triangle are $(1,0),(6,0)$ and $(4,3)$, then by using determinants its area is	
Question 5.		
Solution:	(C) $\frac{15}{2}$	
Question 6.	If $y=x \cdot \log x$, then $\frac{d^{2} y}{d x^{2}}$ is equal to:	
Solution:	(A) $\frac{1}{\mathrm{X}}$	
Question 7.	The antiderivative of $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$ equals:	
Solution:	(C) $\frac{2}{3} \mathrm{x}^{\frac{3}{2}}+2 \mathrm{x}^{\frac{1}{2}}+\mathrm{C}$	
Question 8.	$\int \mathrm{e}^{\mathrm{x}}\left(\frac{1}{\mathrm{x}}-\frac{1}{\mathrm{x}^{2}}\right) \mathrm{dx}$ equals:	
Solution:	(B) $\frac{1}{x} \mathrm{e}^{\mathrm{x}}+\mathrm{C}$	1
Question 9.	The value of $\int_{-1}^{1} \mathrm{x}^{5} \mathrm{dx}$ is	
Solution:	(C) 0	
Question 10.	The order of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$ is :	
Solution:	(A) 2	1
Question 11.	Which substitution can solve a homogeneous differential equation of the form $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$?	
Solution:	Put $x=v y$	1
Question 12.	The function $f(x)=\left\{\begin{array}{cc}\sin \mathrm{x}-\cos \mathrm{x}, & \text { if } \mathrm{x} \neq 0 \\ \mathrm{k} & , \text { if } \mathrm{x}=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then find the value of k.	
Solution:	$\begin{aligned} & \lim _{X \rightarrow 0} f(x)=\lim _{X \rightarrow 0}(\sin x-\cos x) \\ & =0-1 \\ & =-1 \end{aligned}$ Since $f(x)$ is continuous at $x=0$ $\begin{aligned} \therefore \lim _{\mathrm{X} \rightarrow 0} \mathrm{f}(\mathrm{x}) & =\mathrm{f}(0) \\ \Rightarrow-\mathbf{1} & =\mathbf{k} \end{aligned}$	1
Question 13.	If a line has the direction ratios $2,-1,-2$, then what are its direction cosines?	
Solution:	$\frac{2}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}, \frac{-1}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}, \frac{-2}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}$	1

\begin{tabular}{|c|c|c|}
\hline \& \[
\Rightarrow \quad \frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}
\] \& \\
\hline Question 14. \& Compute \(\mathrm{P}(\mathrm{A} \mid \mathrm{B})\), if \(\mathrm{P}(\mathrm{B})=0.5, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.32\) \& \\
\hline Solution: \& \[
\begin{aligned}
\& \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~B})} \\
\& =\frac{0.5}{0.32} \\
\& \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{25}{16}
\end{aligned}
\] \& 1 \\
\hline Question 15. \& Two collinear vectors are always equal in magnitude. (True / False) \& \\
\hline Solution: \& False \& 1 \\
\hline Question 16. \& Two events will be independent, if \(\mathrm{P}\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)=[1-\mathrm{P}(\mathrm{A})][1-\mathrm{P}(\mathrm{B})]\). (True / False) \& \\
\hline Solution: \& True \& 1 \\
\hline Question 17. \& The probability of obtaining an even prime number on each die, when a pair of dice is rolled is. \(\qquad\) . \& \\
\hline Solution: \& 1/6 \& 1 \\
\hline Question 18. \& If \(\vec{a}=2 \hat{\imath}+\hat{\jmath}+3 \hat{k}\) and \(\vec{b}=3 \hat{\imath}+5 \hat{\jmath}-2 \hat{k}\), then \(|\vec{a} \times \vec{b}|=\) \& \\
\hline Solution: \& \(\sqrt{507}\) \& \\
\hline Question 19. \& \begin{tabular}{l}
Assertion (A): If \(R\) is the relation defined in set \(\{1,2,3,4,5,6\}\) as \(R=\{(a, b)\) \(: b=a+1\}\) then \(R\) is not an equivalence relation. \\
Reason (\(\mathbf{R}\)): A relation is said to be an equivalence relation if it is reflexive, symmetric and transitive.
\end{tabular} \& \\
\hline Solution: \& (A). Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A) \& 1 \\
\hline Question 20. \& \begin{tabular}{l}
Assertion (A): The lines are \(\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}\) and \(\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}\) are perpendicular, when \(\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}=0\). \\
Reason (R): The angle \(\theta\) between the lines \(\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}\) and \(\quad \vec{r}=\overrightarrow{a_{2}}+\) \(\mu \overrightarrow{b_{2}}\) is given by \(\cos \theta=\frac{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right| \cdot\left|\overrightarrow{b_{2}}\right|}\).
\end{tabular} \& \\
\hline Solution: \& (A) . Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A) \& 1 \\
\hline \& SECTION - B (2Marks \(\times 5 \mathrm{5}\)) \& \\
\hline Question 21. \& Let L be the set of all lines in a plane and R be the relation in L defined as \(\mathrm{R}=\) \(\left\{\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right): \mathrm{L}_{1}\right.\) is perpendicular to \(\left.\mathrm{L}_{2}\right\}\). Show that R is symmetric but neither reflexive nor transitive. \& \\
\hline Solution: \& \begin{tabular}{l}
```
R is not reflexive, as a line \(\mathrm{L}_{1}\) can't be perpendicular to itself, i.e., \(\left(\mathrm{L}_{1}, \mathrm{~L}_{1}\right) \notin \mathrm{R}\).
R is symmetric as \(\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right) \in \mathrm{R}\)
\(\mathrm{L}_{1}\) is perpendicular to \(\mathrm{L}_{2}\)
\(\Rightarrow \mathrm{L}_{2}\) is perpendicular to \(\mathrm{L}_{1}\)
\(\Rightarrow\left(\mathrm{L}_{2}, \mathrm{~L}_{1}\right) \in \mathrm{R} . \quad \forall \mathrm{L}_{1}, \mathrm{~L}_{2} \in \mathrm{~L}\) \\
R is not transitive. Indeed, if \(L_{1}\) is perpendicular to \(L_{2}\) and \(L_{2}\) is perpendicular to \(L_{3}\), then \(L_{1}\) can never be perpendicular to \(L_{3}\). \\
In fact, \(L_{1}\) is parallel to \(L_{3}\) i.e., \(\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right) \in \mathrm{R}\), and \(\left(\mathrm{L}_{2}, \mathrm{~L}_{3}\right) \in \mathrm{R}\) but \(\left(\mathrm{L}_{1}, \mathrm{~L}_{3}\right) \notin \mathrm{R}\).
```
\end{tabular} \& \(\frac{1}{2}\)
\(\frac{1}{2}\)

1 \\

\hline | OR |
| :--- |
| Question 21. | \& Find the value of: $\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)$ \& \\

\hline Solution: \& | Let $\cos ^{-1}\left(\frac{1}{2}\right)=x$. Then $\cos x=1 / 2=\cos (\pi / 3)$ $\cos ^{-1}\left(\frac{1}{2}\right)=\pi / 3$ |
| :--- |
| Let $\sin ^{-1}\left(\frac{1}{2}\right)=y$. Then, $\sin \mathrm{y}=1 / 2=\sin (\pi / 6)$ $\sin ^{-1}\left(\frac{1}{2}\right)=\pi / 6$ | \& $\frac{1}{2}$

$\frac{1}{2}$ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& Now
\[
\begin{aligned}
\& \cos ^{-1}(1 / 2)+2 \sin ^{-1}(1 / 2)=\pi / 3+(2 \pi) / 6 \\
\& =\pi / 3+\pi / 3 \\
\& =(2 \pi) / 3
\end{aligned}
\] \& 1 \\
\hline Question 22. \& Find the value of \(a, b, c\), and \(d\) from the equations:
\[
\left[\begin{array}{cc}
a-b \& 2 a+c \\
2 a-b \& 3 c+d
\end{array}\right]=\left[\begin{array}{cc}
-1 \& 5 \\
0 \& 13
\end{array}\right]
\] \& \\
\hline Solution: \& \begin{tabular}{l}
Equate the corresponding elements of the matrices:
\[
\begin{array}{lll}
\mathrm{a}-\mathrm{b}=-1 \& \ldots(1) \& 2 \mathrm{a}+\mathrm{c}=5 \\
2 \mathrm{a}-\mathrm{b}=0 \& \ldots(3) \& 3 \mathrm{c}+\mathrm{d}=13
\end{array}
\] \\
Equation (1) -Equation (3)
\[
-a=-1 \Rightarrow a=1
\] \\
Equation (1) \(\Rightarrow 1-\mathrm{b}=-1 \Rightarrow \mathrm{~b}=2\) \\
Equation (2) \(\Rightarrow 2(1)+\mathrm{c}=5 \Rightarrow \mathrm{c}=3\) \\
Equation (4) \(\Rightarrow 3(3)+d=13 \Rightarrow d=4\) \\
Therefore, \(\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=3\) and \(\mathrm{d}=4\)
\end{tabular} \& \(\frac{1}{2}\)
\(\frac{1}{2}\) \\
\hline Question 23. \& Find the value of \(k\) so that the function is continuous at the indicated point \(f(x)=\left\{\begin{array}{ll}k x+1, \& x \leq 5 \\ 3 x-5, \& x>5\end{array} \quad\right.\) at \(\mathrm{x}=5\). \& \\
\hline Solution: \& \begin{tabular}{l}
Given function is \(f(x)= \begin{cases}k x+1, \& x \leq 5 \\ 3 x-5, \& x>5\end{cases}\) \\
When \(\mathrm{x}<5, \mathrm{f}(\mathrm{x})=\mathrm{kx}+1\) : A polynomial is continuous at each point \(\mathrm{x}<5\) \\
When \(x>5, f(x)=3 x-5:\) A polynomial is continuous at each point \(x>5\) \\
Now \(f(5)=5 k+1\)
\[
\begin{align*}
\& \lim _{x \rightarrow 5} f(x)=\lim _{h \rightarrow 0} f(5+h)=3(5+h)-5=15+3 h-5 \\
\& =\lim _{h \rightarrow 0}(10+3 h)=10+3(0)=10 \tag{1}\\
\& \lim _{x \rightarrow 5} f(x)=\lim _{h \rightarrow 0} f(5-h)=k(5-h)+1 \\
\& =\lim _{h \rightarrow 0}(5 k-h k+1)=5 k+1 \tag{2}
\end{align*}
\] \\
Since function is continuous, therefore, both the equations are equal, Equate both the equations and find the value of k ,
\[
\begin{aligned}
\& 10=5 \mathrm{k}+1 \\
\& 5 \mathrm{k}=9 \\
\& \mathrm{k}=9 / 5
\end{aligned}
\]
\end{tabular} \& \(\frac{1}{2}\)

1
1

$\frac{1}{2}$ \\
\hline Question 24. \& Verify that the function $\mathrm{y}=\mathrm{x} \sin 3 \mathrm{x}$, is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+9 y-6 \cos 3 x=0$ \& \\

\hline Solution: \& | Given: $\mathrm{y}=\mathrm{x} \sin 3 \mathrm{x}$ |
| :--- |
| Diff. w.r.t. 'x', and we get | \& \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{equation*}
\frac{d y}{d x}=\sin 3 x+3 x \cos 3 x \tag{1}
\end{equation*}
\] \\
Again differentiate (1) w.r.t. ' \(x\) ', we get
\[
\frac{d^{2} y}{d^{2}}=3 \cos 3 x+3[\cos 3 x+x(-\sin 3 x) \cdot 3]
\] \\
On simplifying the above equation, we get
\[
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=6 \cos 3 \mathrm{x}-9 \mathrm{x} \sin 3 \mathrm{x} \tag{2}
\end{equation*}
\] \\
Now, substitute (1) and (2) in the given differential equation, and we get the following:
\[
\begin{aligned}
\& \text { L.H.S }=\frac{d^{2} y}{{d x^{2}}^{2}}+9 y-6 \cos 3 x \\
\& =(6 \cos 3 x-9 x \sin 3 x)+9(x \sin 3 x)-6 \cos 3 x \\
\& =6 \cos 3 x-9 x \sin 3 x+9 x \sin 3 x-6 \cos 3 x \\
\& =0=\text { R.H.S }
\end{aligned}
\] \\
As L.H.S = R.H.S, the given function is the solution of the corresponding differential equation.
\end{tabular} \& \begin{tabular}{l}
\(\frac{1}{2}\) \\
\\
\\
\hline 1 \\
\hline 1 \\
1
\end{tabular} \\
\hline \begin{tabular}{l}
OR \\
Question 24.
\end{tabular} \& Find the general solution of the differential equation \(\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}\) \& \\
\hline Solution: \& \begin{tabular}{l}
Since \(1+y^{2} \neq 0\), therefore separating the variables, the given differential equation can be written as
\[
\begin{equation*}
\frac{d y}{1+y^{2}}=\frac{d y}{1+x^{2}} \tag{1}
\end{equation*}
\] \\
Integrating both sides of equation (1), we get
\[
\begin{aligned}
\& \int \frac{d y}{1+y^{2}}=\int \frac{d y}{1+x^{2}} \\
\& \tan ^{-1} y=\tan ^{-1} x+C
\end{aligned}
\] \\
which is the general solution of equation (1)
\end{tabular} \& \(\frac{1}{2}\)

1
$1 \frac{1}{2}$ \\
\hline Question 25. \& Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both balls are red. \& \\

\hline Solution: \& | Total number of balls $=10$ black balls +8 red balls $=18$ balls |
| :--- |
| Probability of getting a red ball in the first draw $=\frac{8}{18}=\frac{4}{9}$ |
| As the ball is replaced after the first throw, |
| \therefore Probability of getting a red ball in the second draw $=\frac{8}{18}=\frac{4}{9}$ |
| Since the two balls are drawn with replacement, the two draws are independent. |
| $\mathrm{P}($ both balls are red $)=\mathrm{P}($ first ball is red $) \times \mathrm{P}($ second ball is red $)$ |
| Now, the probability of getting both balls red $=\frac{4}{9} \times \frac{4}{9}=\frac{16}{81}$ | \& | $\frac{1}{2}$ |
| :--- |
| 1 |
| $\frac{1}{2}$ |
| 1 | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& SECTION - C (3Marks \(\times\) 8Q) \& \\
\hline Question 26. \& Let \(\mathrm{A}=\mathbf{R}-\{3\}\) and \(\mathbf{B}=\mathrm{R}-\{1\}\). Consider the function \(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}\) defined by \(f(x)=\left(\frac{x-2}{x-3}\right)\). Is \(f\) one one and onto? Justify your answer. \& \\
\hline Solution: \& \begin{tabular}{l}
\[
\mathrm{A}=\mathrm{R}-\{3\} \text { and } \mathrm{B}=\mathrm{R}-\{1\}
\] \\
\(\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}\) defined by \(\mathrm{f}(\mathrm{x})=(\mathrm{x}-2) /(\mathrm{x}-3)\) \\
Let \((x, y) \in A\) then
\[
f(x)=\frac{(x-2)}{(x-3)} \text { and } f(y)=\frac{(y-2)}{(y-3)}
\] \\
For \(\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})\)
\[
\begin{aligned}
\& \frac{(x-2)}{(x-3)}=\frac{(y-2)}{(y-3)} \\
\& (x-2)(y-3)=(y-2)(x-3) \\
\& x y-3 x-2 y+6=x y-3 y-2 x+6 \\
\& -3 x-2 y=-3 y-2 x \\
\& -3 x+2 x=-3 y+2 y \\
\& -x=-y \\
\& x=y
\end{aligned}
\] \\
Therefore, f is a one-one function.
\[
\begin{aligned}
\& \text { Again, } y=f(x)=\frac{(x-2)}{(x-3)} \\
\& y=\frac{(x-2)}{(x-3)} \\
\& y(x-3)=x-2 \\
\& x y-3 y=x-2 \\
\& x(y-1)=3 y-2
\end{aligned}
\] \\
or \(x=\frac{(3 y-2)}{(y-1)}\) \\
Now, \(f\left(\frac{3 y-2}{y-1}\right)=\)
\[
\begin{aligned}
\& \Rightarrow \frac{\frac{3 y-2}{y-1}-2}{\frac{3 y-2}{y-1}-3}=y \\
\& f(x)=y
\end{aligned}
\] \\
Therefore, f is onto function.
\end{tabular} \& \\
\hline OR Question 26. \& \(\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}+\cos ^{-1} \frac{1-\mathrm{y}^{2}}{1+\mathrm{y}^{2}}\right],|\mathrm{x}|<1, \mathrm{y}>0\) and \(\mathrm{xy}<1\) \& \\
\hline Solution: \& \[
\begin{aligned}
\& \text { Put } \mathrm{x}=\tan \theta \text { and } \mathrm{y}=\tan \phi \text {, we have } \\
\& \tan \frac{1}{2}\left[\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)+\cos ^{-1}\left(\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi}\right)\right] \\
\& =\tan \frac{1}{2}\left[\sin ^{-1} \sin 2 \theta+\cos ^{-1} \cos 2 \phi\right] \\
\& =\tan \frac{1}{2}[2 \theta+2 \phi] \\
\& =\tan (\theta+\phi) \\
\& =\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}
\end{aligned}
\] \& \(\frac{1}{2}\)

1
1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
=\frac{x+y}{1-x y}
\] \& \\
\hline Question 27. \& Find \(X\) and \(Y\), if \(2 X+3 Y=\left[\begin{array}{ll}2 \& 3 \\ 4 \& 0\end{array}\right]\) and \(3 X+2 Y=\left[\begin{array}{cc}2 \& -2 \\ -1 \& 5\end{array}\right]\) \& \\
\hline Solution: \& \begin{tabular}{l}
\[
\begin{align*}
\& 2 X+3 Y=\left[\begin{array}{ll}
2 \& 3 \\
4 \& 0
\end{array}\right] \tag{1}\\
\& 3 X+2 Y=\left[\begin{array}{cc}
2 \& -2 \\
-1 \& 5
\end{array}\right] \tag{2}
\end{align*}
\] \\
Multiply equation (1) by 2 ,
\[
4 \mathrm{X}+6 \mathrm{Y}=2\left[\begin{array}{ll}
2 \& 3 \tag{3}\\
4 \& 0
\end{array}\right]=\left[\begin{array}{ll}
4 \& 6 \\
8 \& 0
\end{array}\right]
\] \\
Multiply equation (2) by 3
\[
9 \mathrm{X}+6 \mathrm{Y}=3\left[\begin{array}{cc}
2 \& -2 \tag{4}\\
-1 \& 5
\end{array}\right]=\left[\begin{array}{cc}
6 \& -6 \\
-3 \& 15
\end{array}\right]
\] \\
Subtract equation (4) from (3)
\[
\begin{aligned}
\& -5 X=\left[\begin{array}{ll}
4 \& 6 \\
8 \& 0
\end{array}\right]-\left[\begin{array}{cc}
6 \& -6 \\
-3 \& 15
\end{array}\right]=\left[\begin{array}{cc}
-2 \& 12 \\
11 \& -15
\end{array}\right] \\
\& X=-1 / 5\left[\begin{array}{ll}
-2 \& 12 \\
11 \& -15
\end{array}\right] \\
\& X=\left[\begin{array}{cc}
2 / 5 \& -12 / 5 \\
-11 / 5 \& 3
\end{array}\right]
\end{aligned}
\]
\end{tabular} \& 1

1 \\
\hline \& Substitute this value of X in equation (1)

$$
\begin{aligned}
& 2\left[\begin{array}{cc}
2 / 5 & -12 / 5 \\
-11 / 5 & 3
\end{array}\right]+3 \mathrm{Y}=\left[\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right] \\
& 3 \mathrm{Y}=\left[\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right]-\left[\begin{array}{cc}
4 / 5 & -24 / 5 \\
-22 / 5 & 6
\end{array}\right] \\
& \mathrm{Y}=1 / 3\left[\begin{array}{cc}
6 / 5 & 39 / 5 \\
42 / 5 & -6
\end{array}\right] \\
& \mathrm{Y}=\left[\begin{array}{cc}
2 / 5 & -8 / 5 \\
14 / 5 & -2
\end{array}\right]
\end{aligned}
$$ \& \\

\hline Question 28. \& Find $\frac{d y}{d x}$ of the function $\mathrm{y}^{\mathrm{x}}=\mathrm{x}^{\mathrm{y}}$ \& \\

\hline Solution: \& | Given: $\mathrm{y}^{\mathrm{x}}=\mathrm{x}^{\mathrm{y}}$ $x^{y}=y^{x}$ |
| :--- |
| Taking log on both sides $\begin{aligned} & \log \left(x^{y}\right)=\log \left(y^{x}\right) \\ & y \cdot \log x=x \cdot \log y \\ & \frac{d}{d x}(y \cdot \log x)=\frac{d}{d x}(x \cdot \log y) \\ & y \cdot \frac{1}{x}+\log x \cdot \frac{d y}{d x}=x \cdot \frac{1}{y} \cdot \frac{d y}{d x}+\log y \cdot 1 \end{aligned}$ | \& 1 \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& $$
\begin{aligned}
& \left(\log x-\frac{x}{y}\right) \cdot \frac{d y}{d x}=\log y-\frac{x}{y} \\
& \left(\frac{(y \log (x)-x)}{y}\right) \frac{d y}{d x}=\frac{(x \log (y)-y)}{x} \\
& \frac{d y}{d x}=\frac{y(x \log (y)-y)}{x(y \log (x)-x)}
\end{aligned}
$$ \& $1 \frac{1}{2}$

$\frac{1}{2}$ \\
\hline Question 29. \& Find the intervals in which the function f is given by $\mathrm{f}(x)=2 \mathrm{x}^{3}-3 \mathrm{x}^{2}-36 \mathrm{x}+7$ is strictly increasing or strictly decreasing. \& \\

\hline Solution: \& | Given function: $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-3 \mathrm{x}^{2}-36 \mathrm{x}+7$ |
| :--- |
| Diff. w.r.t. ' x ' $\begin{align*} & f^{\prime}(x)=6 x^{2}-6 x+36=6\left(x^{2}-x-6\right) \\ & f^{\prime}(x)=6(x-3)(x+2) \tag{1} \end{align*}$ |
| Now for increasing or decreasing, $\mathrm{f}^{\prime}(\mathrm{x})=0$ $\begin{array}{lll} 6(x-3)(x+2)=0 & \\ x-3=0 & \text { or } & x+2=0 \\ x=3 & \text { or } & x=-2 \end{array}$ |
| Therefore, we have sub-intervals are $(-\infty,-2),(-2,3)$ and $(3, \infty)$ |
| For interval $(-\infty,-2)$, picking $x=-3$, from equation (1), $\mathrm{f}^{\prime}(\mathrm{x})=(+\mathrm{ve})(-\mathrm{ve})(-\mathrm{ve})=(+\mathrm{ve})>0$ |
| Therefore, f is strictly increasing in $(-\infty,-2)$ |
| For interval ($-2,3$), picking $x=0$, from equation (1), $\mathrm{f}^{\prime}(\mathrm{x})=(+\mathrm{ve})(-\mathrm{ve})(+\mathrm{ve})=(-\mathrm{ve})<0$ |
| Therefore, f is strictly decreasing in $(-2,3)$. |
| For interval ($3, \infty$), picking $x=4$, from equation (1), $f^{\prime}(x)=(+v e)(+v e)(+v e)=(+v e)>0$ |
| Therefore, is strictly decreasing in $(3, \infty)$. |
| So, f is strictly increasing in $(-\infty,-2)$ and $(3, \infty)$. f is strictly decreasing in $(-2,3)$. | \& 1

$\frac{1}{2}$
$\frac{1}{2}$
$\frac{1}{2}$
$\frac{1}{2}$ \\
\hline Question 30. \& Integrate: $\int \mathrm{x}^{2} \log \mathrm{x} \mathrm{dx}$ \& \\

\hline Solution: \& | It is given that $I=\int \mathrm{x}^{2} \cdot \log \mathrm{x} \mathrm{dx}$ |
| :--- |
| Here by taking x as first function and x^{2} as second function. Now integrating by parts we get $\mathrm{I}=\log \mathrm{x} \int \mathrm{x}^{2} \mathrm{dx}-\int\left\{\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x}) \cdot \int \mathrm{x}^{2} \mathrm{dx}\right\} \cdot \mathrm{dx}$ |
| So we get $=\log (x) \cdot \frac{x^{3}}{3}-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x$ |
| By multiplying the terms $=\frac{x^{3} \cdot \log x}{3}-\int \frac{x^{2}}{3} d x$ |
| It can be written as $=\frac{x^{3} \cdot \log x}{3}-\frac{x^{3}}{9}+C$ | \& $\frac{1}{2}$

1
1 \\

\hline $$
\begin{array}{|c|}
\hline \text { OR } \\
\text { Question } 30 . \\
\hline
\end{array}
$$ \& Evaluate: $\int_{-5}^{5}|x+2| d x$ \& \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Solution: \& \begin{tabular}{l}
\[
\mathrm{I}=\int_{-5}^{5}|\mathrm{x}+2| \mathrm{dx}
\] \\
We know \(|x+2|=\left\{\begin{array}{cl}-(x+2), \& x \leq-2 \\ (x+2), \& x>-2\end{array}\right.\)
\[
\begin{aligned}
\& I=\int_{-5}^{-2}|x+2| d x+\int_{-2}^{5}|x+2| d x \\
\& I=\int_{-5}^{-2}-(x+2) d x+\int_{-2}^{5}(x+2) d x \\
\& I=\left|\frac{-(x+2)^{2}}{2}\right|_{-5}^{-2}+\left|\frac{(x+2)^{2}}{2}\right|_{-2}^{5} \\
\& I=\left(\frac{-(0)^{2}}{2}-\frac{-(-3)^{2}}{2}\right)+\left(\frac{(7)^{2}}{2}-\frac{(0)^{2}}{2}\right) \\
\& I=\frac{9}{2}+\frac{49}{2} \\
\& I=29
\end{aligned}
\]
\end{tabular} \& \(\frac{1}{2}\)

$1-\frac{1}{2}$ \\
\hline Question 31. \& The two adjacent sides of a parallelogram are $2 \hat{\imath}-4 \hat{\jmath}+5 \hat{k}$ and $\hat{\imath}-2 \hat{\jmath}-3 \hat{k}$. Find the unit vector parallel to its diagonal. \& \\

\hline Solution: \& | Adjacent sides of a parallelogram are given as: $\vec{a}=2 \hat{\imath}-4 \hat{\jmath}+5 \hat{k}$ and $\vec{b}=\hat{\imath}-2 \hat{\jmath}-3 \hat{k}$ |
| :--- |
| We know that, the diagonal of a parallelogram is given by $\vec{a}+\vec{b}$ $\begin{aligned} & \vec{a}+\vec{b}=(2+1) \hat{\imath}+(-4-2) \hat{\jmath}+(5-3) \hat{k}=3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k} \\ & \|\vec{a}+\vec{b}\|=\sqrt{(3)^{2}+(-6)^{2}+(2)^{2}} \end{aligned}$ |
| Hence, the unit vector parallel to the diagonal is $\begin{aligned} & \frac{\vec{a}+\vec{b}}{\|\vec{a}+\vec{b}\|}=\frac{3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k}}{\sqrt{(3)^{2}+(-6)^{2}+(2)^{2}}} \\ & =\frac{3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k}}{\sqrt{9+36+4}} \\ & =\frac{3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k}}{7} \\ & =\frac{3}{7} \hat{\imath}-\frac{6}{7} \hat{\jmath}+\frac{2}{7} \hat{k} \end{aligned}$ | \& 1

1
1

1 \\
\hline \& SECTION - C (5Marks \times 4Q) \& \\
\hline Question 32. \& If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, find A^{-1}. Using A^{-1} solve the system of equations

$$
\begin{array}{r}
2 x-3 y+5 z=11 \\
3 x+2 y-4 z=-5 \\
x+y-2 z=-3
\end{array}
$$ \& \\

\hline Solution: \& $$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right] \\
& |A|=2(-4+4)+3(-6+4)+5(3-2)=2(0)+3(-2)+5(1) \\
& =-6+5 \\
& =-1 \neq 0 ; \text { Inverse of matrix exists. }
\end{aligned}
$$ \& 1 \\

\hline
\end{tabular}

Find the inverse of matrix:
Cofactors of matrix:
$\mathrm{A}_{11}=0, \quad \mathrm{~A}_{12}=2, \quad \mathrm{~A}_{13}=1$
$\mathrm{A}_{21}=-1, \quad \mathrm{~A}_{22}=-9, \quad \mathrm{~A}_{23}=-5$
$\mathrm{A}_{31}=2, \quad \mathrm{~A}_{32}=23, \quad \mathrm{~A}_{33}=13$
$\operatorname{adj} . A=\left[\begin{array}{ccc}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]$
So,
$\mathrm{A}^{-1}=\frac{1}{-1}\left[\begin{array}{lll}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]$
Now, matrix of equations can be written as: $\mathrm{AX}=\mathrm{B}$
$\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}11 \\ -5 \\ -3\end{array}\right]$
And, $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]\left[\begin{array}{c}11 \\ -5 \\ -3\end{array}\right]$
$\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
Therefore, $\mathrm{x}=1, \mathrm{y}=2$ and $\mathrm{z}=3$.
Question 33. \quad Find the shortest distance between the lines l_{l} and l_{2} whose vector equations are $\vec{r}=\hat{\imath}+\hat{\jmath}+\lambda(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
and $\quad \vec{r}=2 \hat{\imath}+\hat{\jmath}-\hat{k}+\mu(3 \hat{\imath}-5 \hat{\jmath}+2 \hat{k})$
$\vec{r}=\hat{\imath}+\hat{\jmath}+\lambda(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
Solution:
and $\quad \vec{r}=2 \hat{\imath}+\hat{\jmath}-\hat{k}+\mu(3 \hat{\imath}-5 \hat{\jmath}+2 \hat{k})$
Comparing (1) and (2) with $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ respectively, we get
$\overrightarrow{a_{1}}=\hat{\imath}+\hat{\jmath}, \quad$ and $\quad \overrightarrow{b_{1}}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$
$\overrightarrow{a_{2}}=2 \hat{\imath}+\hat{\jmath}-\hat{k} \quad$ and $\quad \overrightarrow{b_{2}}=3 \hat{\imath}-5 \hat{\jmath}+2 \hat{k}$
Therefore
$\overrightarrow{a_{2}}-\overrightarrow{a_{1}}=\hat{\imath}-\hat{k}$
and
$\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=(2 \hat{\imath}-\hat{\jmath}+\hat{k}) \times(3 \hat{\imath}-5 \hat{\jmath}+2 \hat{k})$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& =\left|\begin{array}{ccc}
\hat{\imath} \& \hat{\jmath} \& \hat{k} \\
2 \& -1 \& 1 \\
3 \& -5 \& 2
\end{array}\right|=3 \hat{\imath}-\hat{\jmath}-7 \hat{k} \\
\& \left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|=\sqrt{9+1+49}=\sqrt{59}
\end{aligned}
\] \\
Hence, the shortest distance between the given lines is given by
\[
\mathrm{D}=\frac{\left|\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)\right|}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}=\frac{|3-0+7|}{\sqrt{59}}=\frac{10}{\sqrt{59}}
\]
\end{tabular} \& \(1 \frac{1}{2}\)
1
1
1 \\
\hline \[
\begin{gathered}
\text { OR } \\
\text { Question } 33 .
\end{gathered}
\] \& Find the vector equation of the line passing through the point \((1,2,-4)\) and perpendicular to the two lines :
\[
\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \text { and } \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}
\] \& \\
\hline Solution: \& \begin{tabular}{l}
The vector equation of a line passing through a point with position vector \(\vec{a}\) and parallel to \(\overrightarrow{\mathrm{b}}\) is \(\vec{r}=\vec{a}+\lambda \vec{b}\).It is given that, the line passes through \((1,2,-4)\) \\
So, \(\quad \overrightarrow{\mathrm{a}}=1 \hat{\imath}+2 \hat{\jmath}-4 \hat{k}\) \\
Given lines are \(\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}\) and \(\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}\) \\
It is also given that, line is perpendicular to both given lines. So we can say that the line is perpendicular to both parallel vectors of two given lines. \\
We know that, \(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}\) is perpendicular to both \(\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}\), so let \(\vec{b}\) is cross product of parallel vectors of both lines i.e. \(\vec{b}=\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\) where \(\overrightarrow{b_{1}}=3 \hat{\imath}-16 \hat{\jmath}+7 \hat{k} \quad\) and \(\overrightarrow{b_{2}}=3 \hat{\imath}-8 \hat{\jmath}-5 \hat{k}\) \\
and Required Normal
\[
\begin{aligned}
\& \vec{b}=\left|\begin{array}{ccc}
\hat{\imath} \& \hat{\jmath} \& \hat{k} \\
3 \& -16 \& 7 \\
3 \& 8 \& -5
\end{array}\right| \\
\& =\hat{\imath}(80-56)-\hat{\jmath}(-15-21)+\hat{k}(24+48) \\
\& \vec{b}=24 \hat{\imath}+36 \hat{\jmath}+72 \hat{k}
\end{aligned}
\] \\
Now, by substituting the value of \(\vec{a} \& \vec{b}\) in the formula \(\vec{r}=\vec{a}+\lambda \vec{b}\), we get
\[
\vec{r}=(1 \hat{\imath}+2 \hat{\jmath}-4 \hat{k})+\lambda(24 \hat{\imath}+36 \hat{\jmath}+72 \hat{k})
\]
\end{tabular} \& 2

1 \\
\hline Question 34. \& Find the area of the region bounded by the curve $\mathrm{y}^{2}=\mathrm{x}$ and the lines $\mathrm{x}=1, \mathrm{x}=4$ and x -axis in the first quadrant. \& \\

\hline Solution: \& | Equation of the curve is $y^{2}=x$. |
| :--- |
| It is a rightward parabola having vertex at origin and symmetrical about x -axis. x $=1$ and $x=4$ are two straight lines parallel to y-axis. |
| $y=\sqrt{x}$ |
|(1) $x=1$ and $x=4$ |
| Points of intersections of given curves |
| At $\mathrm{x}=1, \mathrm{y}=\sqrt{1}= \pm 1 \quad$ points are $(1,1)(1,-1)$ |
| At $x=4, \quad y=\sqrt{4}= \pm 2 \quad$ points are $(4,2)(4,-2)$ |
| \therefore points in first quadrant $\mathrm{A}(1,1) \mathrm{B}(4,2) \mathrm{C}(4,0), \mathrm{D}(1,0)$ |
| Make a rough hand sketch of given curves by taking some corresponding values | \& $1 \frac{1}{2}$ \\

\hline
\end{tabular}

	of x and y. Figure (1) Required area is shaded region ABCD : $\begin{aligned} & \left\|\left.\right\|_{1} \int^{4} \mathrm{y} d x\right\|=\left\|\left.\right\|_{1} \int^{4} \sqrt{\mathrm{x}} \mathrm{dx}\right\| \\ & =\left\|{ }_{1} \int^{4} \mathrm{x}^{1 / 2} \mathrm{dx}\right\| \\ & \left\|\frac{x^{3 / 2}}{3 / 2}\right\|_{1}^{4} \\ & =\frac{2}{3}\left\|\left(4^{3 / 2}-1^{3 / 2}\right)\right\| \\ & =\frac{2}{3}\|(8-1)\|=\frac{2}{3}(7)=\frac{14}{3} \text { sq. units } \end{aligned}$	$1 \frac{1}{2}$
OR Question 34.	Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$	
Solution:	Here $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ It is a horizontal ellipse having center at origin and is symmetrical about both axes (if we change y to -y or x to -x , equation remain same). Standard equation of an ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ By comparing, $\mathrm{a}=4$ and $\mathrm{b}=3$ From equation (1) $\begin{align*} & \Rightarrow y^{2}=\frac{9}{16}\left(16-x^{2}\right) \\ & \Rightarrow y=\frac{3}{4} \sqrt{16-x^{2}} \tag{2} \end{align*}$ Points of Intersections of ellipse (1) with x-axis ($y=0$) Put $y=0$ in equation (1), we have $\begin{aligned} & x^{2} / 16=1 \\ & \Rightarrow x^{2}=16 \\ & \Rightarrow x= \pm 4 \end{aligned}$ Therefore, Intersections of ellipse(1) with x-axis are $(0,4)$ and $(0,-4)$. Now again, Points of Intersections of ellipse (1) with y-axis ($\mathrm{x}=0$) Putting $\mathrm{x}=0$ in equation (1), $\mathrm{y}^{2} / 9=1$ $\begin{aligned} & \Rightarrow y^{2}=9 \\ & \Rightarrow y= \pm 3 . \end{aligned}$	$\frac{1}{2}$

	Therefore, Intersections of ellipse (1) with y-axis are $(0,3)$ and $(0,-3)$. for arc of ellipse in first quadrant. Now, Area of region bounded by ellipse (1) Total shaded area $=4 \mathrm{x}$ Area OAB of ellipse in first quadrant $\begin{aligned} & =4\left\|\int_{0}^{4} y \cdot d x\right\| \quad[\because \text { at end } B \text { of arc } A B \text { of ellipse: } x=0 \text { and at end } A \text { of arc } A B ; \\ & x=4] \\ & =4\left\|\int_{0}^{4} \frac{3}{4} \sqrt{16-x^{2}} \cdot d x\right\|=3\left\|\int_{0}^{4} \sqrt{4^{2}-x^{2}} \cdot d x\right\| \\ & =3\left\|\frac{x}{2} \sqrt{4^{2}-x^{2}}+\frac{4^{2}}{2} \sin ^{-1} \frac{x}{4}\right\|_{0}^{4} . \quad\left[\because \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right] \\ & 3\left[\left((4 / 2) \sqrt{16-16}+8 \sin ^{-1} 1\right)-\left(0+8 \sin ^{-1} 0\right)\right]=3[0+(8 \pi / 2)] \\ & =3(4 \pi)=12 \pi \text { sq. units } \end{aligned}$	1
Question 35.	Solve the following problem graphically: Minimise and Maximise $Z=3 x+9 y$ Subject to the constraints: $\begin{aligned} x+3 y & \leq 60 \\ x+y & \geq 10 \\ x & \leq y \\ x \geq 0, y & \geq 0 \end{aligned}$	
Solution:	$\begin{align*} & Z=3 x+9 y \\ & x+3 y \leq 60 \tag{2}\\ & x+y \geq 10 \tag{3}\\ & x \geq y \tag{4}\\ & x \geq 0, y \geq 0 \tag{5} \end{align*}$ First of all, let us graph the feasible region of the system of linear inequalities (2) to (5). Let $Z=3 x+9 y$ Converting inequalities to equalities$x+3 y=60$X 0 60 Y 20 0 Points are $(0,20),(60,0)$ Now put $(0,0)$ in inequation (2),	

we find $0 \leq 60$, wh Therefore area lies t	
$x+y=10$	
x 0 10 y 10 0	

Points are $(0,10),(10,0)$

Now put (0,0) in inequation (3),
we find $0 \geq 10$, which is False.
Therefore area lies away from the origin from this line.
$x-y=0$

X	0	10	20
y	0	10	20

Points are $(0,0),(10,10),(20,20)$
Now put $(1,0)$ in inequation (4),
we find $1 \geq 0$, which is false.
Therefore area lies away from the $(1,0)$ from this line.
Plot the graph for the set of points

To find maximum and minimum
The feasible region ABCD is shown in the figure. Note that the region is
bounded. The coordinates of the corner points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $(0,10),(5,5)$, $(15,15)$ and $(0,20)$ respectively.

Corner Point	Corresponding Value of
$Z=3 x+9 y$	
A $(0,10)$	90
B $(5,5)$	$\mathbf{6 0 \leftarrow \text { Minimum }}$
C $(15,15)$	$\mathbf{1 8 0 \leftarrow \text { Maximum }}$
D $(0,20)$	$\mathbf{1 8 0}$ (Multiple optimal solutions)

We now find the minimum and maximum value of Z .
From the table, we find that the minimum value of Z is 60 at the point $B(5,5)$ of the feasible region.
The maximum value of Z on the feasible region occurs at the two corner points C $(15,15)$ and $\mathrm{D}(0,20)$ and it is 180 in each case.

\begin{tabular}{|c|c|c|}
\hline \& SECTION - E (4Marks \(\times\) 3Q) \& \\
\hline Question 36. \& \begin{tabular}{l}
The proportion of a river's energy that can be obtained from an undershot water wheel is \(E(x)=2 x^{3}-4 x^{2}+2 x\), units where \(x\) is the speed of the water wheel relative to the speed of the river. \\
Based on the above information answer the following : \\
(i) Find the maximum value of \(\mathrm{E}(\mathrm{x})\) in the interval \([0,1]\). \\
(ii) What is the speed of water wheel for maximum value of \(\mathrm{E}(\mathrm{x})\) ? \\
(iii) Does your answer agree with Mill wrights rule that the speed of wheel should be about one-third of the speed of the river?
\end{tabular} \& \\
\hline \multirow[t]{3}{*}{Solution:} \& \begin{tabular}{l}
(i) We have, \(\mathrm{E}(\mathrm{x})=2 \mathrm{x}^{3}-4 \mathrm{x}^{2}+2 \mathrm{x}\) \\
Differentiating equation (1) w.r.t. \(x\)
\[
\begin{equation*}
E^{\prime}(x)=6 x^{2}-8 x+2 \tag{1}
\end{equation*}
\] \\
For maximum or minimum value of \(E(x), E^{\prime}(x)=0\) we have
\[
\begin{aligned}
\& 6 x^{2}-8 x+2=0 \\
\& 3 x^{2}-4 x+1=0 \\
\& (3 x-1)(x-1)=0 \\
\& \text { i.e. } x=1 / 3, x=1
\end{aligned}
\] \\
Differentiating equation (2) w.r.t. x
\[
E^{\prime \prime}(x)=12 x-8
\] \\
Now,
\[
\text { At } x=1 \quad E^{\prime \prime}(x)=12(1)-8=4=+v e
\] \\
At \(\mathrm{x}=1 / 3 \quad \mathrm{E}^{\prime}(\mathrm{x})=12(1 / 3)-8=-4=-\) ve \\
\(\Rightarrow \mathrm{E}(\mathrm{x})\) has maximum value at \(\mathrm{x}=1 / 3\) \\
Maximum value \(=\mathrm{E}(1 / 3)=2(1 / 3)^{3}-4(1 / 3)^{2}+2(1 / 3)\)
\[
=2 / 27-4 / 9+2 / 3=8 / 27
\]
\end{tabular} \& 1

1 \\
\hline \& (ii) Speed for the Maximum value of $\mathrm{E}(\mathrm{x})$ is $\frac{1}{3}$ units. \& 1 \\
\hline \& (iii) Yes \& 1 \\

\hline Question 37. \& | A linear differential equation is of the form $\frac{d y}{d x}+P y=Q$, where P, Q are functions of x, then such equation is known as linear differential equation. Its solution is given by y.(IF.) $=\int \mathrm{Q}$ (IF.) $\mathrm{dx}+\mathrm{c}, \quad$ where I.F. (Integrating Factor) $=\mathrm{e}^{\int \mathrm{Pdx}}$ |
| :--- |
| Now, suppose the given equation is $x d y+y d x=x^{3} d x$ |
| Based on the above information, answer the following questions: |
| (i)What are the values of P and Q respectively? |
| (ii) What is the value of I.F.? |
| (iii) Find the Solution of given equation. | \& \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Solution:} \& \begin{tabular}{l}
(i) Given equation is \(x \cdot d y+y . d x=x^{3} d x\) Dividing on both side by dx , we have
\[
\Rightarrow P=\frac{1}{x}, Q=x^{2} \begin{gathered}
x \frac{d y}{d x}+y=x^{3} \\
\frac{d y}{d x}+\frac{1}{x} y=x^{2}
\end{gathered}
\] \\
(ii)
\[
\begin{aligned}
\text { I.F.(Integrating Factor) } \& =\mathrm{e}^{\int \operatorname{Pdx}} \\
\& =\mathrm{e}^{\int \frac{1}{\mathrm{x}} \mathrm{dx}} \\
\& =\mathrm{e}^{\log x} \\
\& =\mathrm{x}
\end{aligned}
\]
\end{tabular} \& 1

1 \\
\hline \& (iii) Solution of given equation is

$$
\begin{aligned}
& y .(\text { IF. })=\int Q(\text { IF. }) d x+c \\
& y(x)=\int x^{2}(x) d x+c \\
& x y=\int x^{3} d x+c \\
& x y=\frac{x^{4}}{4}+c
\end{aligned}
$$ \& 2 \\

\hline Question 38. \& | Ratna has two boxes I and II. Box I contains 3 red and 6 black balls. Box II contains 5 red and 5 black balls. Her friend Shivani selects one of the two boxes randomly and draws a ball out of it. The ball drawn by Shivani is found to be red. |
| :--- |
| Let E_{1}, E_{2} and A denote the following events: |
| $\mathrm{E}_{1}:$ Box I is selected by Shiavni. |
| E_{2} : Box II is selected by Shiavni. |
| A : Red ball is drawn by Shivani. |
| (a) Find $\mathrm{P}\left(\mathrm{E}_{1}\right)$ and $\mathrm{P}\left(\mathrm{E}_{2}\right)$ |
| (b) Find $P\left(A \mid E_{1}\right)$ and $P\left(A \mid E_{2}\right)$ |
| (c) Find $\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{A}\right)$ | \& \\

\hline \multirow[t]{3}{*}{Solution:} \& (a) $\begin{aligned} \mathrm{P}\left(\mathrm{E}_{1}\right) \text { : Probability of selecting Box I by Shiavni }=\frac{1}{2} \\ \mathrm{P}\left(\mathrm{E}_{1}\right) \text { : Probability of selecting Box I by Shiavni }=\frac{1}{2}\end{aligned}$ \& 1 \\

\hline \& | (b) $\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)=$ Probability of selecting a red ball when box I has been already selected $=\frac{3}{9}$ |
| :--- |
| $\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=$ Probability of selecting a red ball when box II has been already selected $=\frac{5}{10}$ | \& 1 \\

\hline \& | (c) $\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{A}\right)=$ Probability that a red ball is drawn from the box II |
| :--- |
| By Bayes’ Theorem $\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)}$ | \& \\

\hline
\end{tabular}

| | $P\left(E_{2} \mid A\right)=\frac{\frac{1}{2} \cdot \frac{5}{10}}{\frac{1}{2} \cdot \frac{3}{9}+\frac{1}{2} \cdot \frac{5}{10}}$ |
| :--- | :--- | :--- |
| | |
| $P\left(E_{2} \mid A\right)=\frac{\frac{1}{4}}{\frac{1}{6}+\frac{1}{4}}$ | |
| $P\left(E_{2} \mid A\right)=\frac{\frac{1}{4}}{\frac{4+6}{24}}=\frac{1}{4} \times \frac{24}{10}=\frac{3}{5}$ | 2 |

