Marking Scheme CHE-856

Chemistry Sample Paper (2023-24)	CHE-856	Class: 11 th
1. (a) 2		(1)
2. (b) 6 unpaired e ⁻		(1)
3. (c) F <cl>Br>I</cl>		(1)
4. (d) O_2^{2-}		(1)
5. (b) 18 gm/mol		(1)
6. (c) q=0		(1)
7. (a) +2		(1)
8. (a) electron deficient species		(1)
9. (c) $<\Delta U^{\circ}$		(1)
10.(c)		(1)
11.(a) 0		(1)
12.(a) planar		(1)
13.(b) 6.022 x10 ²¹ molecules		(1)
14.(a) 1		(1)
15.(d) Assertion(A) is false but Reason(R) is	true.	(1)
16.(a) Assertion(A) and Reason(R) are correct and (R) is correct explanation of		
Assertion(A)		(1)
17.(a) Assertion(A) and Reason(R) are correct and (R) is the correct explanation		
of Assertion(A)		(1)
18.(d) Assertion(A) is wrong statement Reason	on(R) is correct sta	atement. (1)
SECTION-B		
19.(a) n=5		(1)
(b) 16e ⁻		(1)
20.(a) as the volume increases, pressure decreases so equilibrium move in		
forward direction where number of moles	increases.	(1)
(b) $K_C(Reverse) = \frac{1}{8.3x15^{-3}} = 120.48$		(1)

$$21.16H^{+}+Cr_{2}O_{7}^{2-}+6e^{-} \longrightarrow 2Cr^{3+}+7H_{2}O$$

$$[C_2H_4O+H_2O \longrightarrow C_2H_4O_2 + 2e^- + 2H^+]3$$

$$Cr_2O_7^{2-} + 16H^+ + 3C_2H_4O + 3H_2O \longrightarrow 2Cr^{3+} + 7H_2O + 3C_2H_4O_2 + 6H^+$$

$$Cr_2O_7^{2-} + 3 C_2H_4O_2 + 10H^+ \longrightarrow 2Cr^{3+} + 3 C_2H_4O_2 + 4H_2O$$
 (2)

22.

$$CH_{2} = CH - CH_{2} - CH_{2$$

23. Buffer solution is the solution which resist change in the pH value of solution when small amount of acid or base is added to it.

Buffer solutions are of two types

(a) Acidic buffer:- It contains equimolar quantities of weak acid and its salt with strong base.

Example acetic acid and sodium acetate

(b) Basic Buffer:- It contains equimolar quantities of weak base and its salt with strong acid

Example ammonium hydroxide and ammonium chloride (2)

24.
$$\bigcirc$$
 + CH₃COCl $\xrightarrow{\text{Anhy}}$ \bigcirc + HCl

Mechanism

(i) Generation of Electrophile

(ii) Attack of electrophile to form intermediate carbocation.

(iii) Loss of proton from carbocation

Newman's Representation

Staggerred Eclipsed

Staggerred Conformation is more stable due to less repulsions. (1)

$$25.(a) S < P < O < N$$
 (1)

$$(b) P < S < N < O$$
 (1)

OR

(a)
$$3s^23p^4$$

Group →16th group

Block —→p-block

$$Period \longrightarrow 3^{rd} period \tag{1}$$

(b) $4s^2$ $3d^2$

Group → 4th group

Block → d-block

$$Period \longrightarrow 4^{th} period \tag{1}$$

SECTION-C

- 26.(a) 1 mole C_2H_6 contains 2 moles of carbon, 3 mole C_2H_6 contains 3x2=6 moles carbon. (1)
 - (b) 1 mole C_2H_6 contains 6 mole hydrogen, 3 mole C_2H_6 contains 6x3=18 mole hydrogen. (1)

(c) 1 mole $C_2H_6 = 6.022 \times 10^{23}$ molecules 3 mole $C_2H_6 = 3x6.022 \times 10^{23}$ molecules $= 18.066 \times 10^{23}$ molecules 27. (a) C non metal (a) A alkali metal

(1)

(1)

(1)

(1)

28.
$$\Delta G = \Delta H - T \Delta S$$
 (1)
= 40.63x1000 - 300 x 108.8
= 7990 J/mol (1)

$$\Delta G = +ve$$
 : reaction is not feasible (1)

OR

$$SO_{2}(g) + \frac{1}{2}O_{2} \rightarrow SO_{3}(g)$$

 $\Delta H = \sum \Delta_{f}H^{\circ} \text{ products } - \sum \Delta_{f}H^{\circ} \text{ reactants}$ (1)
 $= \Delta_{f}H^{\circ} SO_{3} - \Delta_{f}H^{\circ} SO_{2}$
 $= -395.6 - (-296.6)$ (1)
 $= -395.6 + 296.6$

 $29.(a) \text{ AgCl} \equiv \text{Cl}$

= -99 KJ

% of Cl =
$$\frac{35.5}{143.5}$$
 x $\frac{\text{Amt.of AgCl formed}}{\text{Wt.of Organic Compound}}$ x 100
% of Cl = $\frac{35.5}{143.5}$ x $\frac{0.5740}{0.3780}$ x 100
= 37.57%

(b) Paper chromatography is a type of partition chromatography which is based upon the differences in the tendencies of substance to distribute between two phases. (1)

- (c) The process of displacement of σ electrons along the saturated carbon chain due to the presence of a polar covalent bond at one end of the chain is called inductive effect (I effect). It is of two types.
 - (i) + I effect \rightarrow substituent has less e⁻ attracting power than H.
 - (ii) I effect → substituent has more e⁻ attracting power than H.

- I effect example –
$$NO_2$$
, - CN , -X (1½)

Electromeric effect is the complete transfer of shared pair of π e⁻ to one of the atom joined by multiple bond. It is of two types

- (i) + E effect
- (ii) E effect
- (i) + E effect is when π e⁻s are transferred to atom to which attacking reagent get attached example

(ii) - E effect is when π bond e^- all transferred to atom other than the one to which reagent get attached.

Example

$$\begin{array}{cccccc}
C & N & & & & & & & & & \\
\hline
Attacking & & & & & & & & \\
Reagent & & & & & & & & \\
\end{array}$$
(1½)

 $30.(a) \text{ NaOH} \rightarrow \text{Na}^+ + \text{OH}^-$

$$K_W = [H^+] [OH^-] = 10^{-14}$$

$$[H^+] = \frac{10^{-14}}{0,01} \times 100 = 10^{-12}$$

$$pH = -\log [H^+]$$
(1)

$$= -\log 10^{-12}$$

$$= 12$$
(1)

(b)
$$SO_4^{2-}$$

 $31.(a) N_2 + 3H_2 \rightarrow 2NH_3$

$$\Delta ng = 2 - 4 = -2$$

$$\Delta H = \Delta U + \Delta ng RT$$

$$= -87.425 \times 1000 + (-2) \times 8.314 \times 298 \tag{2}$$

$$= -87425 - 4955.14$$

= -77514.7J

OR

(a) $\Delta H = \Delta U$ when $\Delta ng = 0$

eg.
$$H_2 + I_2 \rightarrow 2HI$$

$$\Delta$$
ng = 2-2=0

$$\therefore \Delta H = \Delta U + 0RT$$

$$\therefore \Delta H = \Delta U$$

$$\Delta H = \Delta U + P\Delta V$$

when
$$\Delta V = 0$$
 then $\Delta H = \Delta U$ (2)

OR

any other relevant example.

(b) (i)
$$\Delta ng = 1-3 = -2$$
 $\Delta H = \Delta U - 2RT$ $\Delta H < \Delta U$

(ii)
$$\Delta ng = 1 - 1 = 0$$
 $\Delta H = \Delta U + O$

(iii)
$$\Delta ng = 1 - 0 = 1$$
 $\Delta H = \Delta U + RT$ $\Delta H > \Delta U$ (1)

$$\Delta H > \Delta U \text{ in (iii)}$$
 (1)

32.(a)

$$3$$
-keto- 2 -methylhex -4 - en -1 - al (1)

(b) pent - 3 - en - 1 - yne

HC≅C-CH=CH-CH₃

O
$$\parallel$$
 (c) (i) $H-C-OH$ Methonic acid

O

(iii)
$$CH_3$$
- CH_2 - C - OH Propanoic acid O

(i) 5 3 CN

SECTION-E

33.(a)
$$\Delta V = 45 \text{ x} \frac{2}{100} = 0.9$$
 (1)
$$m = \frac{40}{1000}$$

$$\Delta x = \frac{h}{4\pi m \Delta v}$$

$$= \frac{6.626x10^{-34}}{4x3.14x40x10^{-3}x0.9}$$

$$= 1.46x10^{-33}m$$
(1)

(1)

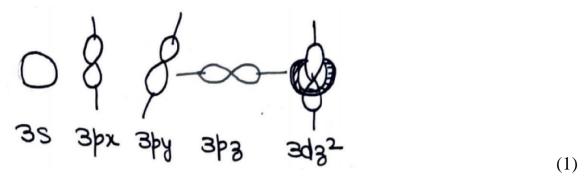
(2)

- (b) Orbit Orbital
 - It I well defined It is region in space (a) circular path around nucleus where the probability around which to find e is maximum e revolve
 - three dimensional motion of electron (b) Represent planar motion

$$(a)\frac{\lambda_{A}}{\lambda_{B}} = \frac{h}{PA}\frac{PB}{h} = \frac{PB}{PA}$$
 (1)

$$P_B = \frac{P_A}{2}$$

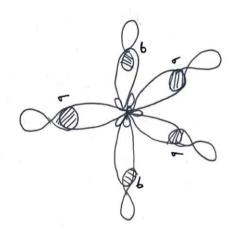
$$\frac{\lambda_{A}}{\lambda_{B}} = \frac{P_{A}}{2.P_{A}} = \frac{1}{2} \tag{1}$$

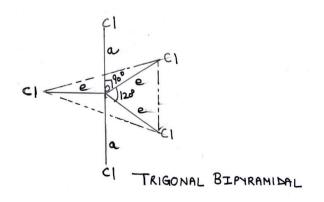

$$\frac{5x10^{-8}}{\lambda B} = \frac{1}{2} : \lambda B = 10x10^{-8}m$$
$$= 10^{-7}m \tag{1}$$

(b) **Emission Spectrum Absorption Spectrum**

- (i) It is obtained when It is obtained when white radiation emitted by white light is passed the excited substance through solution and are analysed with transmitted light is spectroscope analysed through spectroscope
- Emission spectrum Consist of dark lines (ii) consist of bright lines in otherwise coloured lines separated continuous spectrum by dark spaces.

34.(a) P(Ground State) 1s² 2s² 2p⁶ 3s² 3px¹ 3py¹ 3pz¹


P(Excited State) $1s^2 2s^2 2p^6 3px^1 3py^1 3pz^1 3dz^{2^1}$



5 orbital hybridise and form 5 new orbitals of same energy and same shape.

5 sp3d hybrid orbitals adopt trigonal bipyramidal arrangement which overlap with 3pz orbital to form 5 σ bonds

Axial bonds are longer than equatorial bonds due to greater repulsions from other bonds in axial position. (1)

(b) BeH₂ is linear molecule. Therefore the resultant dipole moment of two Be-H bonds get cancelled giving zero dipole moment.

$$\begin{array}{ccccc} & & & & & & \\ & & & & & \\ H - Be - H & & & \mu = 0 & & \\ & & & & OR & & \end{array} \tag{2}$$

(a)
$$O_2 = \sigma l s^2 \ \sigma^* l s^2 \ \sigma^2 s^2 \ \sigma^* 2 s^2 \ \sigma^2 p z^2 \ \pi^2 p x^2 = \pi^2 p y^2 \ \pi^* 2 p x^1 = \pi^* 2 p y^1$$

$$O_2^+ = \sigma l s^2 \ \sigma^* l s^2 \ \sigma^2 s^2 \ \sigma^* 2 s^2 \ \sigma^2 p z^2 \ \pi^2 p x^2 = \pi^2 p y^2 \ \pi^* 2 p x^1 = \pi^* 2 p y^0$$

$$O_2^- = \sigma l s^2 \ \sigma^* l s^2 \ \sigma^2 s^2 \ \sigma^* 2 s^2 \ \sigma^2 p z^2 \ \pi^2 p x^2 = \pi^2 p y^2 \ \pi^* 2 p x^2 = \pi^* 2 p y^1$$

$$Bond \ order \ O_2 = \frac{8-4}{2} = \frac{4}{2} = 2$$

$$(1)$$

$$O_{2}^{+} = \frac{8-3}{2} = \frac{5}{2} = 2.5$$

$$O_{2}^{-} = \frac{8-5}{2} = \frac{3}{2} = 1.5$$
(1)

Higher is the bond order, more is the stability.

$$O_2^+ > O_2 > O_2^-$$
 (1)

(b) CO₂ has zero dipole moment so CO₂ is linear as two C=O bond moments get cancelled where as H₂O molecule has resultant dipole moment. Two O-H bonds are arranged in angular shape and the bond moment of two O-H bonds give resultant dipole moment. (2)

35.(a)

(i)
$$CH_2=CH_2+H_2 \xrightarrow{\text{Ni}} CH_3-CH_3$$
 (1) $523-573\text{K}$

(ii)
$$2CH_3CH_2Cl + Hg_2F_2 \longrightarrow 2CH_3CH_2F + Hg_2Cl_2$$
 (1)

(iii)
$$CH_3Br + 2Na + CH_3Br \xrightarrow{Dry} CH_3-CH_3$$
 (1)

(b)
$$H_2C=CH-CH_2-CH_2-CH_3$$

peroxide

Br

 $1-bromohexane$

(2)

OR

 $2Na$

C1 ether Butane

(b) $3CH\cong CH$
 E tube

(c) Two isomers of C_3H_6O are

 CH_3-CH_2
 CH_3
 CH_3

2-methyl but-2-ene