

1d

Chemistry - XII

Ei

Co-created by Board of School Education Haryana and Educational Initiatives

HOW TO USE THIS BOOKLET

Dear Teachers and Students,

The **Board of School Education Haryana** is pleased to present the **Competency-Based Practice Questions** booklet. This resource has been thoughtfully designed to help you deepen your understanding of key concepts and enhance your problem-solving skills. It includes **50 exemplar questions** carefully aligned with the curriculum to familiarize students with the format of **Competency-Based Questions**. These questions are intended to support targeted practice and develop the skills necessary to confidently approach a variety of question types in assessments.

Best Ways for Teachers to Utilise This Resource

1. Integrate into Classroom Teaching

- Use these questions to demonstrate how theoretical concepts translate into practical applications.
- Encourage group discussions to explore reasoning and understanding of concepts taught.

2. Scaffold Student Learning

- Start with simpler questions and guide students through the thought process.
- Gradually introduce more complex questions to build confidence and familiarity.

3. Incorporate into Assessments

- Use these questions in classroom quizzes or homework to help students adapt to the format.
- Provide feedback that emphasises reasoning over correctness, encouraging students to refine their understanding.

4. Focus on Skill Development

- Highlight how these questions nurture understanding, analysis and critical thinking.
- Use student responses to identify and address misconceptions effectively.

Best Ways for Students and Parents to Utilise This Resource

1. Focus on Conceptual Understanding

- Approach each question as a way to understand *why* and *how* a concept works, rather than simply finding the correct answer.
- 2. Practice Purposefully
 - Don't rush—break down the question, identify the concept it addresses, and plan your approach before solving it.
- 3. Use Feedback to Improve

- Treat mistakes as learning opportunities. Review incorrect answers to understand *what went wrong* and *how to improve*.
- Revisit similar questions to build confidence and mastery over the topic.

Best Ways for Parents to Utilise This Resource

1. Encourage Critical Thinking

• Spend time discussing questions and concepts, asking "Why?" and "How?".

2. Create a Positive Environment

- Celebrate effort and curiosity, not just grades.
- Help your child view mistakes as opportunities to learn and grow.

3. Collaborate with Teachers

- Stay informed about competency-based assessments through school communications.
- Share observations and work with teachers to address any concerns or challenges.

Final Message

These practice questions are an excellent opportunity to strengthen your conceptual understanding and boost your confidence in solving competency-based questions. For students, each question builds skills that will help you tackle similar challenges with ease. For teachers, this is a chance to mentor students in developing their thinking and problem-solving skills.

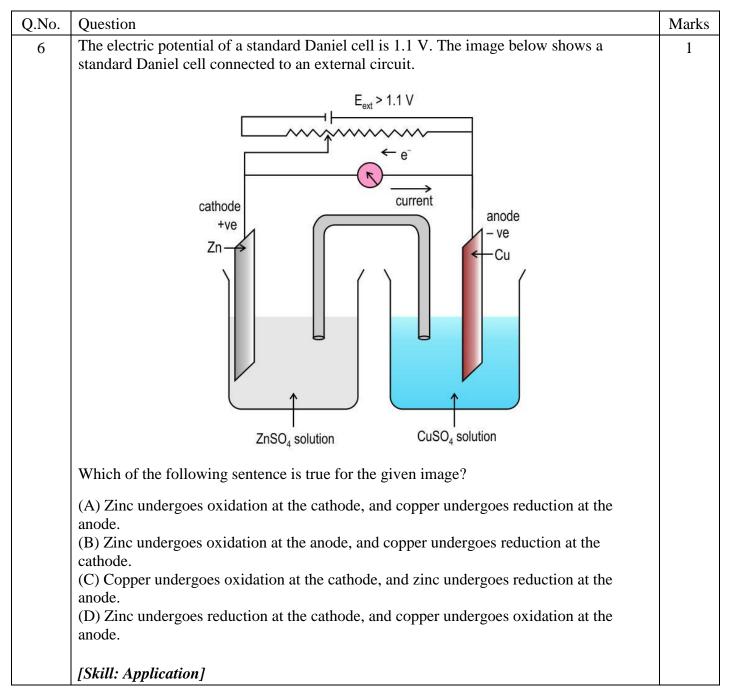
Start today—every effort you invest will prepare you not only for exams but for a lifetime of meaningful learning and success. Let's make this journey toward competency-based education a meaningful and successful one!

Board of School Education, Haryana

Contents

How to use this Booklet	2
Solutions	5
Marking Scheme	7
Electrochemistry	9
Marking Scheme	11
Chemical Kinetics	
Marking Scheme	15
The d- and f-Block Elements	17
Marking Scheme	20
Coordination Compounds	22
Marking Scheme	23
Haloalkanes and Haloarenes	24
Marking Scheme	26
Alcohols, Phenols and Ethers	
Marking Scheme	
Aldehydes, Ketones and Carboxylic Acids	
Marking Scheme	
Amines	
Marking Scheme	
Biomolecules	40
Marking Scheme	42

Chemistry | XII


Solutions

Q.No.	Question	Marks
1	If 50% of a substance X dimerises when dissolved in a solvent with K_f value 25 °C/m, what is Van't Hoff 'i' factor of the solute present in the solution?	
	(The depression in the freezing point is 15 K.)	
	(A) 0.25	
	(B) 0.50	
	(C) 0.75	
	(D) 1.00	
	[Skill: Mechanical]	
2	What is the molarity of the solution of NaOH that has a concentration equivalent to $0.15\% \text{ w/v}$?	1
	(Note: Molecular weight of $Na = 40$)	
	[Skill: Understanding]	
3	The solution with the highest osmotic pressure among the given solutions is	1
	·	
	0.2 M of KCl, 0.1M of Fe ₂ (SO ₄) ₃ , 0.2M glucose, 0.1M urea	
	(Assume 100% dissociation wherever applicable.)	
	[Skill: Mechanical]	

4	(a) The graph below gives the variation of Henry's constant in water for four gases at 298	1+2
	K at atmospheric pressure.	
	Arrange the gases in the decreasing order of solubility in water with a reason.	
	(b) Pure water and an aqueous solution of black coffee are taken in two cups. Draw a graph (qualitative only) of vapour pressure vs temperature for pure water and for the aqueous solution of the black coffee. Also, mark the boiling point for pure water and for the aqueous solution of the black coffee in the graph.	
	[Skill: Application]	
5	(a) The molality of 1.5 litres of a 92% H_2SO_4 solution (w/v) is 8.20 mol/kg.	3+2
	Calculate the density of the solution.	
	(Relative atomic mass of $H=1$, $S=32$, $O=16$)	
	(b) Mr. Jain added some ethylene glycol to his car radiator. The temperature at his place at that time of the year was around -30.74 $^{\circ}$ F.	
	Can you explain his activity with proper reason?	
	[Skill: Understanding]	

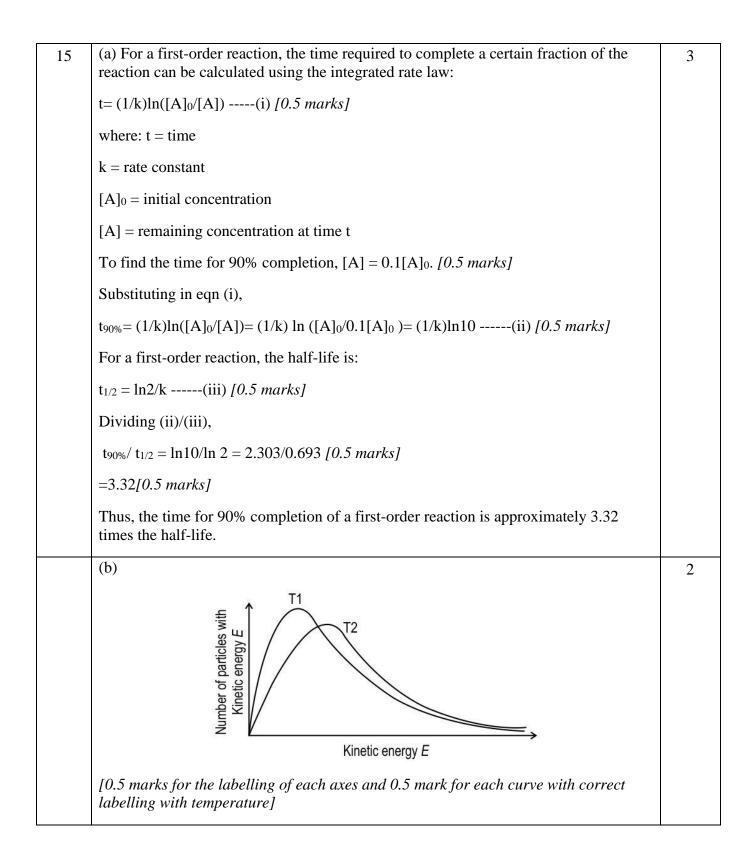
Q No.	Rubric	Marks
1	Correct Answer: C Assume 1 mole of substance X was dissolved in water. As the degree of dimerization is 0.50, then the number of moles of dimerized phenol: 0.50/2 (since two monomers combine to form one dimer) The number of moles of undimerized phenol: $1-0.50 = 0.50$ The Van't Hoff factor i is given by: => i = (0.50 + 0.50/2) / 1 = 0.75	1
	A: Students choosing this option may lack the understanding of abnormal colligative properties.	
	B: Students choosing this option may lack the understanding that substance X dimerized.	
	D: Students choosing this option may lack the understanding of abnormal colligative properties.	
2	0.15% w/v means 0.15g of NaOH is dissolved in 100 mL of solution.	1
	Molarity (M) = mass of solute/(molar mass x volume of solution) [0.5 marks]	
	$= 0.15/(40 \ge 0.10) = 0.15/4 = 0.0375 \text{ mol/L} = 0.0375 \text{ M} [0.5 \text{ marks}]$	
3	$0.1M \text{ of } \text{Fe}_2(\text{SO}_4)_3$	1
4	(a) The decreasing order of solubility of the gases from the graph is:	1
	S>Q>R>P [0.5 marks]	
	According to Henry' law, the gas with the lowest Henry's constant is the most soluble and the gas with the highest constant is the least soluble. [0.5 marks]	
	$\begin{array}{c} & & & & \\ 1.013 \ \text{bar}\\ \text{or 1 Atm}\\ & & \\ \hline \text{Black Coffee Solution}\\ & & \\ \hline \text{Black Coffee Solution}\\ & & \\ \hline \text{Black Coffee Solution}\\ & & \\ \hline \text{Temperature/K}\\ & & \\ \hline \text{Temperature/K}\\ & & \\ \hline \text{Temperature/K}\\ & & \\ \hline \text{Where } T_b^{\circ} \text{ is the boiling point of water and } T_b \text{ is the boiling point of aqueous solution of black coffee.} \\ \hline \text{[0.5 marks for correctly labelling the axis, 1 mark for drawing both the curves and labelling them correctly, and 0.5 marks for labelling the boiling point of both the liquids]} \end{array}$	2

5	(a) Volume of the solution, $V = 1.5 L$	3
	Mass percentage of H_2SO_4 in the solution, w/v=92% (i.e., 92 g of H_2SO_4 per 100 mL of solution)	
	Molality, m = 8.20 mol/kg	
	Molar mass of H ₂ SO ₄ ,	
	$M_{H_2SO_4} = 98g/mol \ [0.5 \ marks]$	
	Mass of H ₂ SO ₄ in the solution = (92/100) * 1500 = 1380 g = 1.38 kg [0.5 marks]	
	No. of moles of H_2SO_4 in the solution = $1380/98 = 14.08 \text{ mol } [0.5 \text{ marks}]$	
	Mass of solvent (kg) = No. of moles/molality of the solution = 14.08/8.20 = 1.717 kg [0.5 marks]	
	Thus, total mass of solution = 1.38 + 1.717 = 3.097 kg [0.5 marks]	
	Density = Mass in kg/volume in L = $3097/1500 = 2.065$ kg/L = 2.07 kg/L	
	[Award 0.5 marks for the correct answer with proper units.]	
	(b) In cold countries the water in the car radiator freezes. [1 mark]	2
	Adding substances like ethylene glycol to the car radiators, decreases the freezing point of the aqueous solution, ensuring that the car radiator functions properly in cold temperatures. [1 mark]	

Electrochemistry

7	Two statements are given - one labelled Assertion (A) and the other labelled Reason (R).	1
	Assertion (A): The electrical conductance for copper wire decreases with increase in temperature.	
	Reason (R): The number of free electrons in copper decreases significantly with increase in temperature.	
	Which of the following is correct?	
	 (A) Both A and R are true, but R is the correct explanation of the A. (B) Both A and R are true, but R is not the correct explanation of the A. (C) A is true, but R is false. (D) A is false, but R is true. 	
	[Skill: Understanding]	
8	The standard reduction potentials for Cu and Zn electrodes are 0.350 V and - 0.763 V respectively. Consider the following cell:	1
	Zn I Zn ⁺² (1.0 M) II Cu ⁺² (1.0 M) I Cu	
	Is the cell reaction spontaneous? Give a reason.	
	[Skill: Application]	
9	Class XII students set up a galvanic cell with a 100 g copper bar and 1 litre of 1M ZnSO ₄ solution. If the cell operates with a steady current of 2A, calculate the time (in seconds) needed to deposit 5 g of zinc on the cathode.	2
	(Molar mass of $Cu = 64$; $Zn = 65$; $1F = 96500 C$)	
	[Skill: Application]	
10	Answer the following questions considering hydrogen fuel cell.	1+1+1
	(a) Write the chemical equation for the overall reaction in a hydrogen fuel cell.	+1+1
	(b) Mention one advantage and one limitation of using hydrogen fuel cells for energy generation.	
	(c) Explain why fuel cells are considered more efficient than traditional combustion engines.	
	(d) State one real life application of this cell.	
	(e) Discuss one strategy to overcome the challenges associated with hydrogen fuel cells.	
	[Skill: Mechanical]	

Q No.	Rubric	Marks
6	Correct Answer: D From the image we see electrons flow from the anode to the cathode. So, oxidation occurs at the Cu electrode and reduction occurs at the Zn electrode. Zn gets deposited at the cathode the Cu moves to the solution as Cu^{+2} ions.	1
	A: Students choosing this option may lack the understanding that an increase in the E_{ext} above 1.1 V starts the reaction in the opposite direction.	
	B: Students choosing this option may lack the understanding that oxidation occurs at the cathode.	
	C: Students choosing this option may lack the understanding that oxidation occurs at the cathode.	
7	Correct Answer: C The electrical conductance for copper wire decreases with increase in temperature, as resistivity increases with temperature. The number of free electrons in copper does not change significantly with increase in temperature but but their ability to move freely is reduced.	1
	A: Students choosing this lack understanding of factors effecting electrical conductance of a metallic conductor.	
	B: Students choosing this lack understanding of factors effecting electrical conductance of a metallic conductor.	
	D: Students choosing this lack understanding of factors effecting electrical conductance of a metallic conductor.	
8	$E_{cell} = E_{cathode} - E_{anode} = [0.350 - (-0.763)] = 1.113 V [0.5 marks]$	1
	As the E_{cell} is positive the cell reaction will be spontaneous. [0.5 marks]	
9	Cathode reaction involved is: $Zn^{+2} + 2e^{-}> Zn(s) [0.5 marks]$	2
	2 moles of electrons are required to deposit 1 mole of Zn.	
	Moles of Zn to be deposited: Mass of Zn/Molar mass of $Zn = 5/65 = 1/13$ moles [0.5 marks]	
	To deposit 1 mole of Zn 2F charge is needed.	
	So, to deposit $1/13$ mole of Zn = no. of moles x 2F charge is needed = $(1/13)$ x 2 x 96500 = 14846.15 C [0.5 marks]	
	Current passed is 2A	
	Time required = $Q/I = 14846.15/2 = 7423.08$ secs [0.5 marks]	
10	(a) The chemical equation is $2H_2 + O_2 \rightarrow 2H_2O + energy$	1


(b) Advantage: Produces only water as a by-product.	1
Limitation: Expensive catalysts like platinum are required.	
[0.5 marks for each correct answer.]	
[Accept any other valid answer.]	
(c) Fuel cells directly convert chemical energy into electrical energy with minimal energy loss, avoiding the intermediate step of combustion.	1
[Accept any other valid answer]	
 (d) The cell was used for providing electrical power in the Apollo space programme.	1
(e) Using cheaper and more abundant materials like carbon-based electrodes that can reduce the cost of fuel cells.	1
[Accept any other valid answer.]	

Chemical Kinetics

Q.No.	Question	Marks
11	Shamoita compiled a list of rate expressions for several reactions she studied during her lab classes:	1
	I. Rate = k $[P]^{3/2} [Q]^{-1}$	
	II. Rate = $k [P]^1 [Q]^1$	
	III. Rate = k $[P]^1 [Q]^0$	
	Which of the following arranges the reactions in the increasing order of their overall reaction order?	
	(A) I, II, III	
	(B) I, III, II	
	(C) II, III, I (D) III, II, I	
	[Skill: Application]	
12	During hydrolysis of ethyl acetate, the order of the reaction changes from	1
	to when the amount of water is reduced	
	considerably.	
	[Skill: Mechanical]	
13	Carbon dating is a technique used by archaeologists to determine the age of organic materials, such as trees, plants, animal remains, and human artifacts made from wood and leather, by measuring the amount of carbon-14 present.	2
	An archaeologist discovered that the carbon-14 content in the remains of an animal was 25% of the original carbon-14 present in the plant's body when it died.	
	What is the age of this sample?	
	(Given the half-life of carbon-14= 5730 years and $\log 4 = 0.6$)	
	[Skill: Mechanical]	

14	Redraw th	aw the graphs labelling the axes correctly:			3
		Order of the reaction	Graph		
		ZERO			
		ZERO			
		FIRST			
	[Skill: Ap	plication]			
15	(a) How is half-life?	s the time required for 90% comp	pletion of a first-order reaction related to	its	3+2
	(b) Draw Maxwell-Boltzmann curve showing the distribution for temperatures $T_1(70^{\circ}C)$ and $T_2(80^{\circ}C)$ for a sample of nitrogen gas.				
	[Skill: Understanding]				

Q No.	Rubric				Marks	
11	Correct Answer: B To determine the overall reaction order for each of the reactions listed, we need to sum the exponents of the concentrations in the rate expression for each reaction. order of I = $\frac{1}{2}$; order of II = 2; order of III= 1.			1		
	A: Students choosing this option may lack the understanding that order of a reaction is the sum of powers of the concentration of the reactants in the rate law expression is called the order of that chemical reaction.					
	C: Students choosin the reactions.	ng this option may have	e got confused about the	node of arranging		
	the sum of powers		the understanding that o the reactants in the rate la			
12		-	er of the reaction change water is reduced conside	-	1	
13	Decay of ¹⁴ C is a fi	rst order reaction.			2	
	$=> k = 0.693/t_{1/2} =$	0.693 / 5730 [0.5 mark	ks]			
	$=> t = (2.303/k) \log(A_0/A) [0.5 marks]$					
	$=> t = (2.303 \times 5730/0.693) \times \log 100/25$					
	=> t = 11425.27 years (approx.) [1 mark]					
14					3	
		Order of the reaction	Graph			
		ZERO	X			
		ZERO	Rate			
		FIRST	Rate X			
	[X] - represents concentration of the reactant.					
	[Award 1 mark for each correct answer.]					
	[Accept any other valid answer.]					

The d- and f-Block Elements

Q.No.	Question					
16	Which of the following Reaction L: $5S^{2-} + 2MnO_4^- + 16H^+ -$ Reaction M: $8MnO_4^- + 3S_2O_3^{2-} + H_2O_3^{2-}$	$\longrightarrow 2Mn^{2+} + 8H_2O +$	- 5S	? 1		
	Option	Reaction L	Reaction M	1		
	Α	pH < 7	pH > 7	-		
	В	pH = 7	pH > 7]		
	С	pH = 7	pH = 7			
	D	pH > 7	pH < 7			
17	[Skill: Mechanical]7Two statements are given - one labelled Assertion (A) and the other labelled Reason (R).Assertion (A): Ni(CO)4 and Fe(CO)5 show dsp³ hybridisation. Reason (R): Nickel and iron's oxidation state is zero in Ni(CO)4 and Fe(CO)5.Which of the following is correct?(A) Both A and R are true, and R is the correct explanation of the A. (B) Both A and R are true, but R is not the correct explanation of the A. (C) A is true, but R is false. (D) A is false, but R is true.[Skill: Understanding]					

18	The observed colour of an aq. solution of P^{+2} ion is colourless. P belongs to the first transition series. The graph below gives the standard electrode potential values of the successive elements of the first transition series.					
	0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0					
	Which of the positions on the graph is most likely to represent P? Why is P^{+2} colourless?					
	[Skill: Application]					
19	Beena made the following point about the two oxoanions of chromium.					
	I) The bond angle of chromate ion is 126 and that of dichromate is 109.5					
	II) The magnetic moment of chromate and dichromate is the same.					
	III) Sodium dichromate has lower lattice energy and higher hydration energy than potassium dichromate.					
	Identify the statement(s) that is/are correct with a reason.					
	[Skill: Application]					
20	Ti ³⁺ in an aqueous solution forms a complex that absorbs light with a wavelength of 5000 Å. Complete the table given below:	3				
	Wavelength (shorter than/greater than) 5000 Angstrom Reason					
	The initial ligand in Ti ⁺³ complex is replaced with CN ⁻					
	The initial ligand in Ti ⁺³ complex is replaced with Cl ⁻					
	[Skill: Application]					

	Element		Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	
	Atomic number		21	22	23	24	25	26	27	28	29	30	
	Electronic conf	guratio	n										
		М	3d ¹ 4s ²	$3d^{2}4s^{2}$	3d ³ 4s ²	3d ⁵ 4s ¹	3d ⁵ 4s ²	$3d^{6}4s^{2}$	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²	
		M [*] M ²⁺	3d'4s' 3d ¹	3d ² 4s' 3d ²	3d [°] 4s' 3d ³	3d ⁵ 3d ⁴	3d ⁵ 4s ¹ 3d ⁵	3d°4s ¹ 3d ⁶	3d'4s ¹ 3d ⁷	3d ⁸ 4s ¹ 3d ⁸	3d ¹⁰ 3d ⁹	3d ¹⁰ 4s ¹ 3d ¹⁰	
		M ³⁺	50 [Ar]	3d ¹	3d ²	3d ³	3d ⁴	3d ⁵	3d ⁶	3d ⁷	-	- Ju	
	Enthalpy of ato	misation	n, $\Delta_{\alpha}H^{C}$	/kJ mo	ol ⁻¹								
			326	473	515	397	281	416	425	430	339	126	
	Ionisation entha	alpy /∆	a _α H ⁰ /kJ	mol ⁻¹									
	$\Delta_{\alpha}H^{O}$	1	631	656	650	653	717	762	758	736	745	306	
	$\Delta_{\alpha}H^{O}$	Ш	1235	1309	1414	1592	1509	1561	1644	1752	1958	1734	
	$\Delta_{\alpha}H^{O}$	Ш	2393	2657	2833	2990	3260	2962	3243	3402	3556	3837	
	Metallic/ionic radii/pm	М	164	147	135	129	137	126	125	125	128	137	
	raun/pm	M ³⁺	73	67	64	62	65	65	61	60	-	-	
	Standard electrode	M ²⁺ /M	-	-1.63	-1.18	-0.90	-1.18	-0.44	-0.28	-0.25	+0.34	-0.76	
	potential E ^o /V	M ³⁺ /M ²⁺	-	-0.37	-0.26	-0.41	+1.57	+0.77	+1.99	-	-	-	
	Density/g cm ⁻³		3.43	4.1	6.07	7.19	7.21	7.8	8.7	8.9	8.9	7.1	
 (a) Refer to the (b) How does across the period (c) Why do the [Skill: Application of the second se	the enthalp od? Give a e last two e	y of reas	hydı on f	ratio or y	on of our a	the answ	elem /er.	ents	of tl	ne fii			

Q No.	Rubric	Marks
16	Correct Answer: A This is the correct answer as oxidation of hydrogen sulphide to sulphur occurs in an acidic medium and thiosulphate is oxidised to sulphate in an alkaline medium. Thus, L represents pH<7 and m represents pH>7.	1
	B: Students choosing this option may lack the understanding about the various reactions of transition elements and the reaction conditions.	
	C: Students choosing this option may lack the understanding about the various reactions of transition elements and the reaction conditions.	
	D: Students choosing this option may lack the understanding about the various reactions of transition elements and the reaction conditions.	
17	Correct Answer: D CO is strong field ligand. In Ni, the 4s and 3d orbitals rearrange to form sp ³ hybrid orbitals. Thus, Ni(CO) ₄ shows sp ³ hybridisation. In Fe, the 4s,4p and 3d orbitals create the hybrid orbitals showing dsp ³ hybridisation. Thus, Fe(CO) ₅ shows dsp ³ hybridisation. So, assertion is false. Nickel and iron's oxidation state is zero in Ni(CO) ₄ and Fe(CO) ₅ as (CO) has no charge.	1
	A: Students choosing this lack understanding of structure of Ni(CO) ₄ and Fe(CO) ₅	
	B: Students choosing this lack understanding of structure of Ni(CO) ₄ and Fe(CO) ₅	
	C: Students choosing this lack understanding of structure of Ni(CO) ₄ and Fe(CO) ₅	
18	P is most likely to represent position I in the graph. [0.5 marks] P ⁺² does not have any unpaired delectrons. So, due to the absence of the d-d transitions it appears colourless. [0.5 marks]	1
19	The statement(s) that is/are correct are: II) The magnetic moment of chromate and dichromate is the same. [0.5 marks]	2
	The oxidation state of chromium in chromate and dichromate is the same. [0.5 marks] III) Sodium dichromate has lower lattice energy and higher hydration energy than potassium dichromate. [0.5 marks]	
	The ionic radius of the sodium ion is less than that of the potassium ion.	
	[0.5 marks]	

20				3		
		Wavelength (shorter than/greater than) 5000 Angstrom	Reason			
	The initial ligand in Ti ⁺³ complex is replaced with CN ⁻	Wavelength shorter than 5000 Angstrom	CN is a strong field ligand. This means the energy gap between the lower and the higher energy levels in d- orbital becomes larger. We know, E = hc/ λ . So higher value of E results in the absorption of light with a shorter wavelength.			
	The initial ligand in Ti ¹³ complex is replaced with Cl ⁻	Wavelength greater than 5000 Angstrom	Cl ⁻ is a weak field ligand. Thus, the energy gap between the d-orbitals is reduced. We know, $E = hc/\lambda$. So lower value of E results in the absorption of light with a longer wavelength			
	[Award 0.5 mark each for co each for the reason]	prrectly identifying the natur	re of wavelength and 1 mark			
21	 (a) The electronic configuration of Sc is 3d¹,4s². Sc⁺² is formed by losing only the 4s² electrons, which is an unstable electronic configuration. But if Scandium loses one more electron then it will attain a noble gas configuration of argon that is most stable. So, the Sc⁺³/Sc⁺² potential is difficult to measure as the Sc⁺² state is unstable in aqueous solutions. [Award 1 mark for showing/mentioning the electronic configuration of the Sc⁺³ and Sc⁺² ions and 1 mark for stating "Sc⁺² state is unstable in aqueous solutions'] 					
	 (b) The enthalpy of hydration increases across the period from left to right. [0.5 mark] As we move across the period, the ionic charge increases while the ionic radius decreases. This leads to a higher charge density, which enhances the attraction between the metal ions and water molecules, resulting in more negative enthalpy of hydration. [1 mark] 					
	(c) Zn and Cu are the last tw configuration of Zn and Cu i subshell, making higher oxic configuration in the d orbital	s ([Ar]3d ¹⁰ 4s ²) and ([Ar]3d lation states (+3) unlikely be	¹⁰ 4s ¹) results in a stable d-	1.5		
	[0.5 mark for each identifica	tion and 0.5 mark for reaso	on]			

Coordination Compounds

Q.No.	Question	Marks				
22	Which two compounds are expected to form same number of unique ions?	1				
	(A) $K_4[Fe(CN)_6]$ and $KAl(SO_4)_2.12H_2O$					
	(B) $KAl(SO_4)_2.12H_2O$ and $K_4[Fe(CN)_6]$					
	(C) $FeSO_4.(NH_4)_2SO_4.6H_2O$ and $K_3[Fe(CN)_6]$					
	(D) KCl.MgCl ₂ .6H ₂ O and FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O					
	[Skill: Mechanical]					
23	The number of moles of AgCl precipitated per mole of the compound cisplatin with excess AgNO ₃ is	1				
	[Skill: Mechanical]					
24	Soumya observed that $[MnCl_6]^{-3}$ and $[Mn(CN)_6]^{-3}$ both contain Mn(III) as the central metal ion with a difference in the colour of their solutions.	2				
	Which complex is coloured and which is colourless? Give a reason for your answer.					
	[Skill: Understanding]					
25	Look at the two complexes given below and answer the questions that follow:					
	Complex I Complex II	+1.5				
	$\begin{bmatrix} H_2C & H_2 & H_2N & CH_2 \\ H_2C & H_2N & CH_2 \\ H_2C & H_2N & CH_2 \end{bmatrix}^{2+}$					
	(a) Identify the nature of the ligands in both the complexes.					
	(b) Calculate the magnetic moment of complex I and complex II.					
	(c) What are the electronic configurations of the t_{2g} and e_g orbitals of Cu^{+2} in both these complexes?					
	(d) Can complex I show geometrical isomerism? Give a reason for your answer.					

Q No.	Rubric	Marks
22	Correct Answer: D Both compounds dissociate to form 5 ions thus these two compounds are expected to form the same number of ions.	1
	A: Students choosing this option may lack the understanding about the difference between the complex and double salts.	
	B: Students choosing this option may have got confused between the number of ions being furnished by these salts.	
	C: Students choosing this option may have got confused between the number of ions being furnished by these salts.	
23	2	1
24	In [MnCl ₆] ⁻³ chloride is a weak field ligand, allowing d-d transitions to occur. These transitions are responsible for the colour of the complex. Hence, [MnCl ₆] ⁻³ is coloured complex.	2
	[1 mark for correct answer with reason.]	
	In $[Mn(CN)_6]^{-3}$, CN- is a strong field ligand. All the electrons pair up in the lower- energy t_{2g} orbitals. Thus, no unpaired electrons are available for d-d transitions, making the complex colourless. Hence, $[Mn(CN)_6]^{-6}$ is colourless complex.	
	[1 mark for correct answer with reason.]	
25	(a)	1
	-Complex I: Ligand is both chelating and bidentate	
	-Complex II: Ligand is both chelating and bidentate	
	[0.5 marks to be awarded if either chelating or bidentate is mentioned.]	
	(b) The oxidation state of copper in both the complexes is $+2$, so, its EC is $3d^9$. Thus, in both the complexes the number of unpaired electrons is 1. [0.5 marks]	1.5
	So, the magnetic moment of both the complex is = $\sqrt{n(n+2)}$ [n is the number of unpaired electrons [0.5 marks]	
	$=\sqrt{1(1+2)} = \sqrt{3} = 1.73$ BM [0.5 marks]	
	(c) The electronic configuration of the t_{2g} and e_g orbitals in complexes I and II will be $t_{2g}^{\ 6}$, $e_g^{\ 3}$ as in both these complexes, the ligands are strong field ligands. [1 mark]	1
	(d) None of the complexes will show geometrical isomerism because the ethane-1,2- diamine and the dioxime ligands are bidentate and form rigid chelate rings that prevent cis and trans forms from existing.	1.5
	[Award 0.5 marks for writing not possible and 1 mark for writing the correct reason]	

Haloalkanes and Haloarenes

Q.No.	Question	Marks
26	Two statements are given - one labelled Assertion (A) and the other labelled Reason (R). Assertion(A): The hydrolysis of 1-chlorobutane occurs faster than 2-chloro-2-	1
	methylpropane in S_N1 mechanism. Reason(R): 2-chloro-2-methylpropane is a tertiary haloalkane and 1-chlorobutane is a primary haloalkane.	
	Which of the following is correct?	
	 (A) Both A and R are true, and R is the correct explanation of the A. (B) Both A and R are true, but R is not the correct explanation of the A. (C) A is true, but R is false. (D) A is false, but R is true. 	
	[Skill: Understanding]	
27	Which of the following compounds contains a halogen atom attached to sp ³ hybridised carbon atom?	1
	I II III IV	
	CI CI CH ₂ CI	
	 (A) I and II (B) II and III (C) I and IV (D) III and IV 	
	[Skill: Understanding]	
28	Compound P reacts with hydroiodic acid to form 1-iodo-1-methylcyclohexane.	2
	Identify P and write the chemical equation showing the formation of the mentioned product.	
	[Skill: Application]	

29	1-Bromopentane reacts with an iodide ion to form 1-iodopentane.	1.5+
	(a) Identify the reaction mechanism. Give reason.	1.5
	(b) What will be the effect on the rate of the reaction if the concentration of iodide ion is doubled assuming the concentration of 1-bromopentane is constant? Explain your answer.	
	[Skill: Understanding]	
30	Diya took three different isomers of chlorobutane (primary, secondary, and tertiary) named as L, M, N in three test tube. The boiling point of M is more than that of L. N has lower boiling point than L. She carried out a series of tests with the haloalkanes. Answer the questions that follow:	2.5+1 +1.5
	(a) Give the IUPAC names of the three compounds identifying them. Give a reason for your answer.	
	(b) Write an equation identifying the alkene which on addition of HCl yields only compound L?	
	(c) State the IUPAC name of the product formed when M reacts with Mg in dry ether? Write an equation justifying your answer.	
	[Skill: Application]	
31	Compound 'O' with the formula $p-NO_2C_6H_4Cl$, on reduction yields compound 'P'. 'P' when suspended in cold aqueous mineral acid, and treated with sodium nitrite, yields, Q. Q when treated with cuprous chloride yields 'R'.	3+2
	(a) Write equations showing the conversions from O to P; P to Q and Q to R.	
	(b) Write equations showing the reaction of KCN and AgCN with R.	
	[Skill: Application]	

Q No.	Rubric	Marks
26	Correct Answer: D 2-chloro-2-methylpropane is a tertiary haloalkane and 1-chlorobutane is the primary haloalkane. So, the hydrolysis of the tertiary haloalkane occurs faster by the S_N1 mechanism than the primary.	1
	A: Students choosing this may lack understanding of hydrolysis reaction of haloalkanes.	
	B: Students choosing this may lack understanding of hydrolysis reaction of haloalkanes.	
	C: Students choosing this may be guessing.	
27	Correct Answer: D In option I the compound does not contain halogen atom attached to sp ³ hybridised carbon atom. In option II the halogen is directly attached to a carbon atom in a benzene ring. Carbon atoms in benzene are sp ² hybridised. In option III the halogen is attached to a CH ₂ group. This compound contains halogen atom attached to sp ³ hybridised carbon atom. In option IV the compound contains a halogen atom attached to sp ³ hybridised carbon atom.	1
	A: Students choosing this option may have the misconception about the hybridisation of carbon atoms.	
	B: Students choosing this option may have the misconception about the hybridisation of carbon atoms.	
	C: Students choosing this option may have the misconception about the hybridisation of carbon atoms.	
28	Compound P is 1-methylcyclohexene. [1 mark]	2
	P reacts with hydroiodic acid to give 1 -iodo-1-methylcyclohexane. $\begin{array}{c} & & & \\ & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline$	
29	(a)This is $S_N 2$ mechanism. [0.5 marks]	1.5
	The combination of 1-bromopentane's primary structure, low steric hindrance, and ability of bromide to act as a good leaving group makes it ideal to undergo $S_N 2$ mechanism. [1 mark]	
	 (b) If the concentration of iodide ion is doubled, the rate will also be doubled, assuming the concentration of 1-bromo pentane remains constant. [0.5 marks] The rate law for the given reaction is Rate = k[1-Bromopentane] [I⁻] 	1.5

	ion. [1 mark]				
30	(a) The boiling point of M is more than L and N is less than L. So, M is 1-chlorobutane as it has the highest boiling point. The boiling point of N is least so it is 2-chloro-2-methylpropane. L has the moderate boiling point so it is 2-chlorobutane. [0.5 marks for each correct identification]	2.5			
	M has a straight-chain structure, leading to stronger van der Waals forces and a higher boiling point. L has a branched structure but less branching than the tertiary isomer, so its boiling point is intermediate. N has the most branched structure, resulting in the weakest van der Waals forces and the lowest boiling point.				
	[1 mark for the reason]				
	(b)CH ₃ CH=CHCH ₃ + HCl> CH ₃ CH(Cl)CH ₂ CH ₃ [1 mark]	1			
	(c) The product formed when M reacts with Mg in dry ether is butyl magnesium chloride. [0.5 marks]	1.5			
	CH ₃ CH ₂ CH ₂ CH ₂ Cl + Mg CH ₃ CH ₂ CH ₂ CH ₂ MgCl [1 mark]				
31	(a) $(a) \qquad \qquad$	3			
	'O' 'P' 'Q' 'R'				
	[Award 1 mark for each conversion]				
	(b)	2			
	CI $CN\downarrow + 2 KCN \rightarrow O + 2 KCI$				
	$\begin{array}{c} CI \\ \downarrow \\ O \\ \hline \\ O \\ \end{array} + 2 AgCN \longrightarrow \begin{array}{c} NC \\ \downarrow \\ O \\ \hline \\ O \\ \end{array} + 2 AgCI \end{array}$				
	CI NC				
	[Award 1 mark for each conversion]				
	[Accept any other valid answer.]				

Alcohols, Phenols and Ethers

Q.No.	Question			Marks
32	Statement 1 - F and methyl chl Statement 2 - F methoxypropio The question as What is the bon methoxy group	oride. Reaction M: Anisole reacts with pro	ess hydrogen chloride to form phenol panoyl chloride to form nus points were: hat is the directive property of the	1
	Team	In reaction L the bond that cleaves	In reaction M methoxy group is	
	Red	Aryl oxygen bond	meta, para directing	
	Blue	only ortho directing		
	Green	Alkyl oxygen bond	ortho, para directing	
	Yellow	Aryl oxygen bond	ortho, meta directing	
	Which team is (A) Team red (B) Team blue (C) Team green (D) Team yello [Skill: Underst	n ow anding]		
33	An aqueous sol butan-2-ol. [Skill: Mechan	ution of butan-1-ol has a	pH than an aqueous solution of	1

34	Phenol reacts with bromine under different sets of conditions to form different products.	2+1+2
	(a) Write the reaction of phenol reacting with bromine in:	
	(i) polar solvent	
	(ii) non-polar solvent.	
	(b) In one of the reactions stated in (a), a mixture of products 'P' and 'Q' is formed. Identify the major product with a reason.	
	(c) Three different brominated products are obtained due to bromination of phenol under different conditions as stated in (a). Arrange them in the increasing order of boiling point with a reason.	
	[Skill: Understanding]	

Q No.	Rubric	Marks
32	Correct Answer: C The alkyl oxygen bond breaks in reaction L as aryl oxygen bond is more stable and in reaction M the methoxy group is ortho para directing as in the resonating structures, the electron density at ortho and para position are increased.	1
	A: Students choosing this option may lack the understanding that the alkyl oxygen bond breaks in reaction L as aryl oxygen bond is more stable and in reaction M the methoxy group is ortho para directing as in the resonating structures, the electron density at ortho and para position are increased.	
	B: Students choosing this option may lack the understanding that the alkyl oxygen bond breaks in reaction L as aryl oxygen bond is more stable and in reaction M the methoxy group is ortho para directing as in the resonating structures, the electron density at ortho and para position are increased.	
	D: Students choosing this option may lack the understanding that the alkyl oxygen bond breaks in reaction L as aryl oxygen bond is more stable and in reaction M the methoxy group is ortho para directing as in the resonating structures, the electron density at ortho and para position are increased.	
33	An aqueous solution of butan-1-ol has a <u>lower</u> pH than an aqueous solution of butan-2-ol.	1
	[Accept any other valid answer.]	
34	(a) (i) $\downarrow \qquad \downarrow \qquad H_2O$ $\downarrow \qquad H_2$	2
	(ii)	
	$ \xrightarrow{OH} \xrightarrow{Br_2 \text{ in } CS_2} \xrightarrow{OH} \xrightarrow{Br} + \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} $	
	Br Minor Major	
	[1 mark + 1 mark]	
	(b) p-bromo phenol is the major product. [0.5 marks]	1
	The para position is electronically more stable and less sterically hindered than the ortho position, making substitution at the para position more favourable. [0.5 mark]	

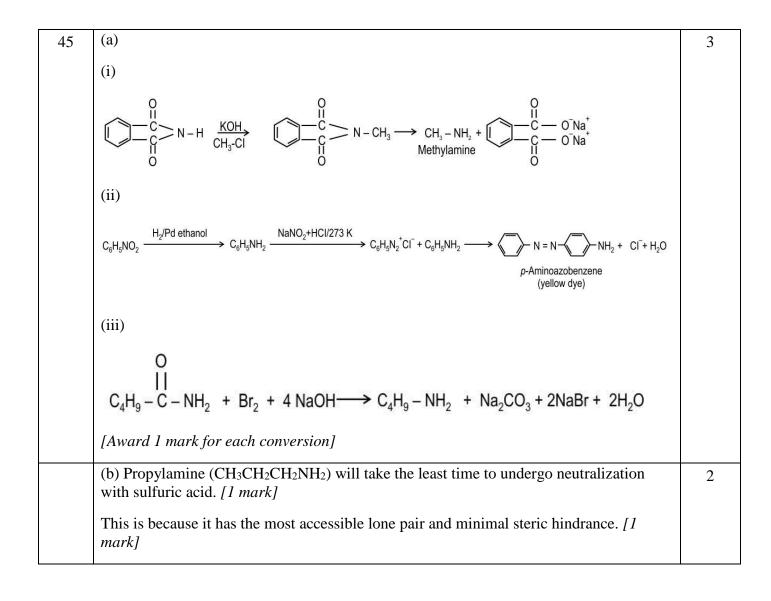
(c) The increasing order of boiling points of the three brominated products is:	2
ortho-bromophenol< para-bromo phenol<2,4,6-tribromophenol [0.5 marks]	
Ortho-bromophenol has the lowest boiling point due to intramolecular hydrogen bonding.	
para-bromophenol has higher boiling point than ortho due to stronger intermolecular hydrogen bonding.	
2,4,6-Tribromophenol has the highest boiling point due to the increased molecular weight and the greater strength of intermolecular forces resulting from multiple bromine atoms.	
[0.5 marks for each explanation]	

Aldehydes, Ketones and Carboxylic Acids

07	Question			Marks	
35	Benzyl magnesium br to form:	omide reacts with car	bon dioxide (dry ice) in presence	of dry ether 1	
	(A) Benzoic acid				
	(B) Benzaldehyde(C) Acetophenone				
	(D) Phenyl acetic acid	ł			
	[Skill: Understanding	<i>;]</i>			
36	The table below gives	the pK _a values of fou	r carboxylic acids P, Q, R, and S	· 1	
		Acid	pKa value		
		Р	0.70		
		Q	3.41		
		R	4.46		
		S	10.3		
	If 10 mL of equimolar solutions of acids P, Q, R, and S are added to the same amount of				
	potassium metal, which completely?	ch acid will cause the	potassium metal to react the faste	est and	
	[Skill: Understanding	;]			
	Answer questions 37-38 based on the information given below.				
			ormation given below.		
	A 40% solution of an 'M' is gas at room ter	aldehyde 'M' is used	brmation given below. to preserve biological specimens	. Aldehyde	
37	'M' is gas at room ter	aldehyde 'M' is used nperature.	-		
37	'M' is gas at room ter(a) Identify aldehyde	aldehyde 'M' is used nperature. 'M'. Give any two of i	to preserve biological specimens	ed. 1.5+	
37	'M' is gas at room ter(a) Identify aldehyde(b) Identify the composite	aldehyde 'M' is used nperature. 'M'. Give any two of i	to preserve biological specimens	ed. 1.5+	
37 38	 'M' is gas at room ter (a) Identify aldehyde (b) Identify the comparison of the comparison of	aldehyde 'M' is used nperature. 'M'. Give any two of i ound which on oxidati	to preserve biological specimens	ed. 1.5+ ate yields 0.5	
	 'M' is gas at room ter (a) Identify aldehyde (b) Identify the composite aldehyde 'M' . [Skill: Mechanical] (a) Write the reaction HCl. 	aldehyde 'M' is used nperature. 'M'. Give any two of i ound which on oxidati when aldehyde 'M' is	to preserve biological specimens ts uses other than the one specific on with pyridinium chlorochrom	ed. 1.5+ 0.5 ncentrated 1+2	

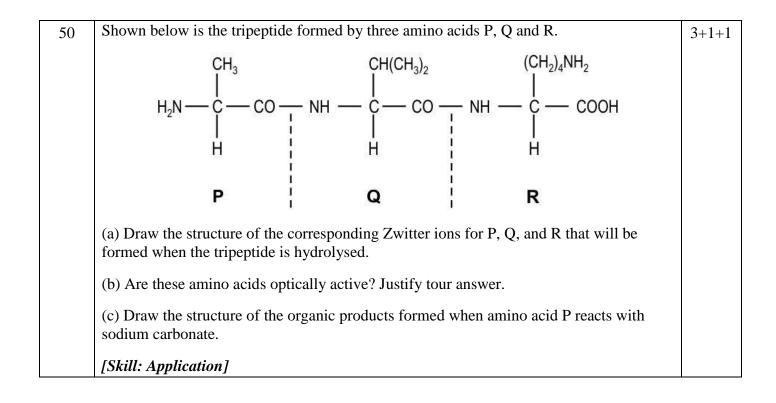
Experiment	Observat	ion Infe	rence	Supporting equati	ions
P) 'M' is treated with 2,4-DNP reagent	Forms an orang precipitate	e-red			
Q) 'M' is warmed with Tollen's reagent.	Forms a bright s mirror.	silver			
 R) 'M' undergoes a disproportionation rea when heated with concentrated alkali. 	ction Forms an alcoh a sodium salt	ol and			
S) 'M' treated with sodiun borohydride	n Forms the same as formed in tes				
T) 'M treated with potassis permanganate	um Forms a compo with molecular formula C ₇ H ₆ O ₂	1			
The table below lists		ining three carbo			
an aldehyde, and an o four carbon atoms, n			P	6	٦
	ot listed in any pa P 272	Q 370	R 280	S 322	

Q No.	Rubric	Marks
35	Correct Answer: D This is the correct answer as Benzyl magnesium bromide reacts with CO ₂ to produce magnesium carboxylate intermediate, which on acidifying is converted to Phenyl acetic acid.	1
	A: Students choosing this option may lack the understanding that toluene forms when benzyl magnesium bromide reacts with water or other proton sources, but not with carbon dioxide.	
	B: Students choosing this option may lack the understanding that Aldehydes generally form from specific reduction reactions, not from Grignard reagents reacting with CO ₂ .	
	C: Students choosing this option may lack the understanding that acetophenone (C ₆ H ₅ COCH ₃) is a ketone, which is formed when a Grignard reagent reacts with an ester or acyl chloride, not with carbon dioxide.	
36	Potassium will react the fastest and completely in acid P.	1
37	 (a) Compound 'M' is methanal. [0.5 marks] -To prepare bakelite (a phenol-formaldehyde resin) -To prepare glues and other polymeric products with urea. 	1.5
	[0.5 marks + 0.5 marks]	
	(b) Methanol	0.5
38	(a) HCHO $\xrightarrow{Zn(Hg)/HCl}$ > CH ₄ + H ₂ O	1
	(b) The Cannizzaro reaction occurs with aldehydes that do not have alpha-hydrogen atom.	2
	Formaldehyde (aldehyde 'M') has no alpha-hydrogen (hydrogen on the carbon adjacent to the carbonyl group), making it ideal for the Cannizzaro reaction. [1 mark]	
	Formaldehyde (aldehyde 'M') cannot undergo the aldol condensation reaction as it does not have an alpha-hydrogen needed to form the enolate ion. [1 mark]	

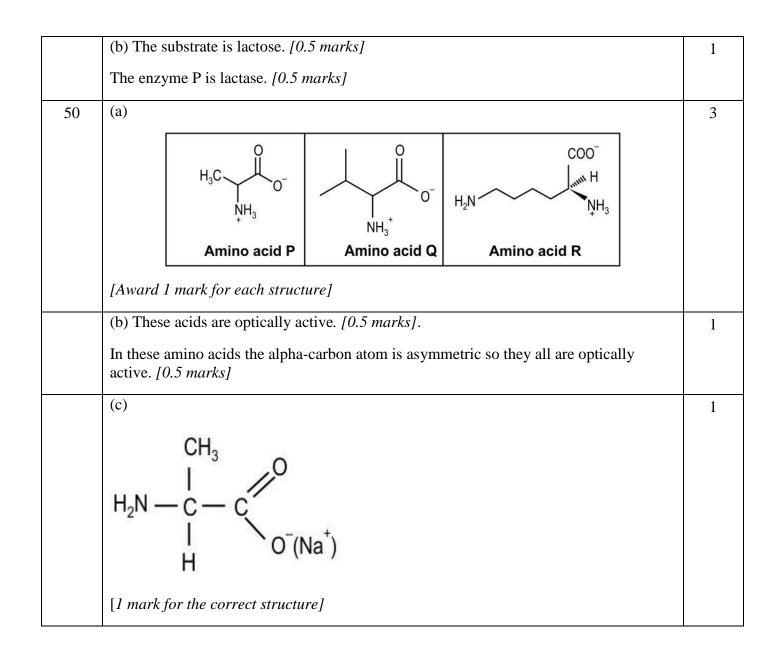

	Experiment	Observation	Inference	Supporting equations	
	P) 'M' is treated with 2,4-DNP reagent	Forms an orange-red precipitate	' <u>M' is an aldehyde or</u> <u>a ketone</u>	$-C = O + C_6H_3(NO_2)_2NHNH_2 \rightarrow -C=N-NHC_6H_3(NO_2)_2 + H_2O$	
	Q) 'M' is warmed with Tollen's reagent.	Forms a bright silver mirror.	' <u>M' is an aldehyde</u>	$\begin{array}{c} C_6H_5CHO + 2[Ag(NH_3)_2]^+ \\ + 3OH^- \rightarrow C_6H_5COO^- + \\ 2Ag + 4NH_3 \\ + 2H_2O \end{array}$	
	 'M' undergoes a disproportionation reaction when heated with concentrated alkali. 	Forms an alcohol and a sodium salt	'M' lacks alpha H- atom	2C ₆ H₅CHO + NaOH→ C ₆ H₅COONa + C ₆ H₅CH₂OH	
	S) 'M' treated with sodium borohydride	Forms the same alcohol as formed in test (R)	' <u>M' is benzaldehyde</u>	$C_6H_5CHO + NaBH_4 + H_2O$ → $C_6H_5CH_2OH + NaBO_2$	
	T) 'M treated with potassium permanganate	Forms a compound with molecular formula $C_7H_6O_2$	'M' is benzaldehyde	C ₆ H₅CHO + [O] → C ₆ H₅COOH	
	[Award 0.5 marks for eac	h correctly filled in	nference and suppor	rting equations]	
40	(a) P is butane, Q is 1-pro [0.5 marks for each corre	-	yethane and S is pr	opanal.	3
	(b) Hybridisation of carbo		o oxygen atom in R	is sp^3 and in S is sp^2 .	1
	(c) S (propanal), and Q (1 corresponding acetal.	- propanol), react i	n the presence of H	Cl gas to form the	2
	[0.5 marks for each corre	ct identification]			
	$\begin{array}{c} CH_3 - CH_2 \\ H \end{array} \xrightarrow{CH_3 - CH_2} C = 0 \\ H \\ ga \end{array}$	$ \begin{array}{c} CH_2 - OH \\ \overset{\frown}{\underset{S}{\overset{CI}{\underset{S}{\overset{S}}{\overset{S}{\overset{S}{\overset{S}}{\overset{S}{\overset{S}{\overset{S}{\overset{S}}}}}}}}}$	$a = CH = O - CH_2 - CH_2$ $O - CH_2 - CH_2$ $O - CH_2 - CH_2$ Acetal	- CH ₃ - CH ₃ + H ₂ O	

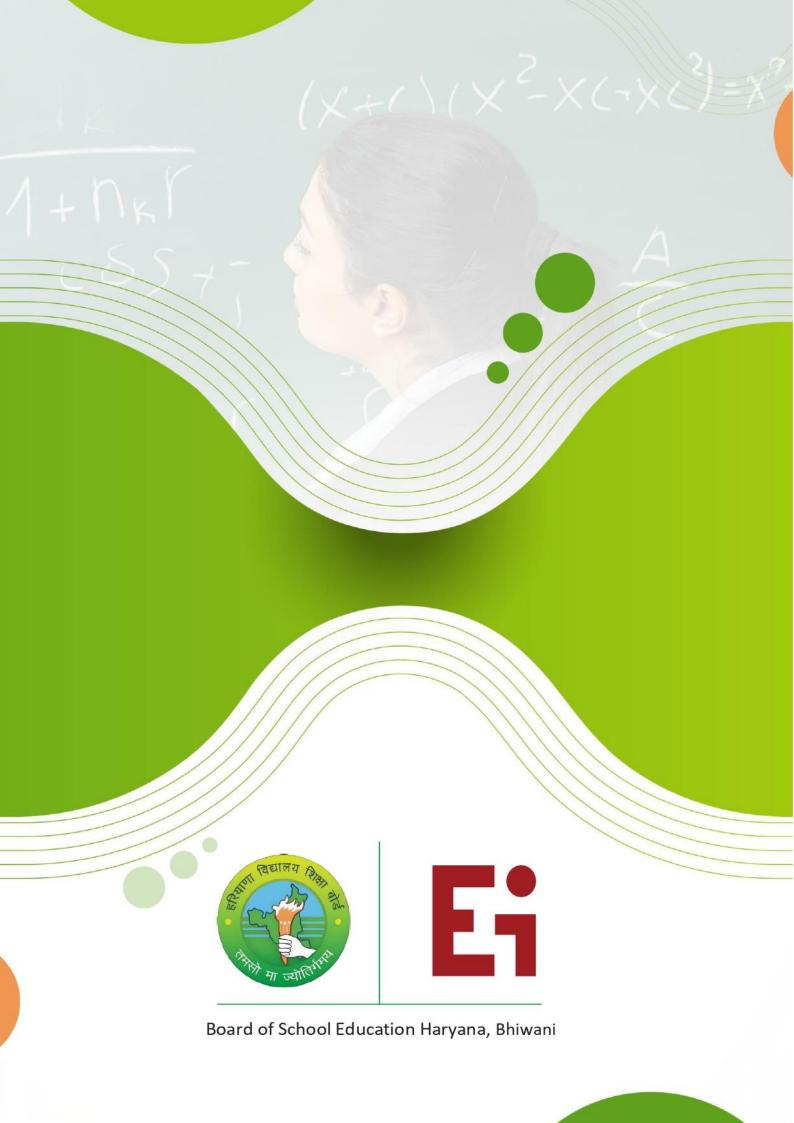
Amines

Q.No.	Question	Marks
41	Two statements are given - one labelled Assertion (A) and the other labelled Reason (R).	1
	Assertion (A): The diazonium salts are very good intermediates for the introduction of groups into the aromatic ring.	
	Reason (R): Diazonium salts undergo diverse substitution reactions with good yields.	
	Which of the following is correct?	
	 (A) Both A and R are true, and R is the correct explanation of the A. (B) Both A and R are true, but R is not the correct explanation of the A. (C) A is true, but R is false. (D) A is false, but R is true. 	
	[Skill: Mechanical]	
42	In which of the following options are the following amines arranged in the increasing order of bond angles (C-N-C or C-N-H): methylamine, aniline, dimethylamine, triethylamine?	1
	(A) methylamine, aniline, dimethylamine, trimethylamine	
	(B) aniline, methylamine, dimethylamine, trimethylamine	
	(C) trimethylamine, dimethyl amine, methyl amine, aniline(D) trimethylamine, aniline, dimethylamine, methylamine	
	[Skill: Understanding]	
	Answer questions 43-44 based on the information given below:	
	An organic compound 'P' undergoes the following reactions: - reacts with benzene sulphonyl chloride to form a compound 'Q'. - reacts with benzoyl chloride to form N-methylbenzamide. - reacts with nitrous acid to form an unstable aliphatic diazonium salt.	
	- reacts with CH ₃ COCl to form a compound 'R'.	
43	(a) Will 'P' undergo the carbylamine test? If not, give a reason for your answer. If yes, write a reaction showing the reaction.	1.5 + 0.5
	(b) Compare the pK_b of 'P' with that of ammonia.	
	[Skill: Understanding]	
44	Identify the molecular formula of 'P', Q' and R with suitable reasons/reactions.	3
	[Skill: Understanding]	


45	(a) Carry out the following conversions as directed:	3+2
	(i) Prepare methylamine using the Gabriel phthalimide synthesis method.	
	(ii) Nitrobenzene to a yellow dye.	
	(iii) Prepare butanamine using the Hoffmann bromamide reaction.	
	(b) Krishan created a list of the isomers of the aliphatic amine, C ₃ H ₉ N. Which of these isomers will take the least time to undergo neutralisation reaction with sulphuric acid and why?	
	[Skill: Understanding]	

Q No.	Rubric	Marks
41	Correct Answer: A Assertion is correct as diazonium salt is used as it is an important intermediate for conversions due to their stability, versatility in substitution reactions, clean reaction mechanisms, and ability to introduce a wide range of functional groups into aromatic rings efficiently. Thus, reason is also correct and explains the assertion.	1
	B: Students choosing this may lack understanding of the reason for diazonium salts acting as good intermediates for the introduction of groups into the aromatic ring.	
	C: Students choosing this may lack understanding of the reason for the versatility of diazonium ions.	
	D: Students choosing this may lack understanding of the reason for the versatility of diazonium ions.	
42	Correct Answer: B Aniline has the smallest angle due to lone pair delocalization. Methylamine has a standard lone pair-bond pair repulsion, yielding a slightly larger angle. Dimethylamine has enhanced electron density from two methyl groups, increasing bond angle. Trimethylamine has maximum steric and electronic effects, giving the largest bond angle.	1
	A: Students choosing this option may lack the understanding of the relation of bond angle with structure of amines.	
	C: Students choosing this option may lack the understanding of the relation of bond angle with structure of amines.	
	D: Students choosing this option may lack the understanding of the relation of bond angle with structure of amines.	
43	 (a) Yes. 'P' being a primary amine on heating with chloroform and ethanolic potassium hydroxide forms corresponding isocyanide. [0.5 marks] CH₃ - NH₂ + CHCl₃ + 3 KOH — Heat —> CH₃ - NC + 3 KCl +3 H₂O [1 mark] 	1.5
	(b)The pK_b of 'P' is less than that of ammonia.	0.5
44	'P' reacts with benzoyl chloride to form N-methylbenzamide. So, 'P' is most likely to be CH ₃ NH ₂ (methylamine). [1 mark]	3
	'P' reacts with benzene sulphonyl chloride ($C_6H_5SO_2Cl$) to form 'Q' that is $C_6H_5SO_2NHCH_3$	
	$C_6H_5SO_2Cl + CH_3NH_2> C_6H_5SO_2NHCH_3 + HCl [1 mark]$	
	'P' reacts with CH ₃ COCl to form 'R' that is CH ₃ NHCOCH ₃	
	CH ₃ COCl + CH ₃ NH ₂ >CH ₃ NHCOCH ₃ + HCl [1 mark]	




Biomolecules

Q.No.	Question	Marks
46	Which of the following statements about protein denaturation is correct?	1
	(A) Denaturation of a protein breaks the bonds between carbon and hydrogen atoms in the backbone.	
	(B) Denaturation affects the three-dimensional shape but not the primary structure of the protein.	
	(C) Denaturation of a protein causes it to lose its amino acid sequence.(D) Denaturation of a protein changes its primary structure.	
	[Skill: Mechanical]	
47	The sweetness of a lemonade can be increased by heating a sugar solution with a little lemon juice.	1
	Write a balanced equation showing the above reaction.	
	[Skill: Understanding]	
	Answer questions 48-49 based on the information given below.	
	The optimum pH of an enzyme P is 'x'. Enzyme 'P' is used in the hydrolysis of a substrate.	
48	How will the reactivity of the enzyme change at pH 'z' (value of $z >$ value of x) and at pH 'y' (value of $y <$ value of x)? Give a reason for your answer.	2
	[Skill: Mechanical]	
49	(a) Express the following graphically:	2+1
	'The activation energy for the hydrolysis of a substrate is more in absence of the specific enzyme P than in its presence'	
	(b) Experimentally a linkage is found between C_1 of galactose and C_4 of glucose in the substrate. Identify the substrate and the enzyme P that might be used in this reaction to convert substrate to glucose and galactose.	
	[Skill: Understanding]	

Q No.	Rubric	Marks				
46	Correct Answer: B Denaturation disrupts the secondary, tertiary, and quaternary structures of a protein by breaking Hydrogen bonds, altering its 3D conformation without changing the amino acid sequence.	1				
	A: Students choosing this option may have the misunderstanding that the denaturation breaks the covalent bonds like C-H or peptide bonds in the protein's backbone; it affects weaker bonds like hydrogen bonds and ionic interactions.					
	C: Students choosing this option may have the misunderstanding that the denaturation alters the amino acid sequence; only the functional and structural integrity of the protein is affected.					
	D: Students choosing this option may have the misunderstanding that the primary structure of a protein, which refers to the sequence of amino acids held together by peptide bonds, changes during denaturation.					
47		1				
	$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\text{acid}} C_6H_{12}O_6 + C_6H_{12}O_6$ Sugar Glucose Fructose					
	Sugar Glucose Fructose					
48	The reactivity of the enzyme decreases at pH 'z'. [0.5 mark]	2				
	The reactivity of the enzyme decreases at pH 'y'. [0.5 mark]					
	When an enzyme in its native form, is subjected to chemical change like change in pH, the hydrogen bonds are disturbed. Due to this, globules unfold and helix get uncoiled and protein loses its biological activity. [1 mark]					
49	(a)	2				
	Activation energy without enzyme P Activation energy with enzyme P Products Reaction [0.5 marks for correct labelling of each axis in the graph, 0.5 marks each for drawing correctly the catalysed and uncatalysed curve]					

