Total No. of Printed Pages : 40

# MARKING INSTRUCTIONS AND MODEL ANSWERS MATHEMATICS 

(Academic/Open)
(Only for Fresh/Re-appear Candidates)
उप-परीक्षक मूल्यांकन निर्देशों का ध्यानपूर्वक अवलोकन करके उत्तर- पुस्तिकाओं का मूल्यांकन करें। यदि परीक्षार्थी ने प्रश्न पूर्ण व सही हल किया है तो उसके पूर्ण अंक दें।

## General Instructions :

(i) Examiners are advised to go through the general as well as specific instructions before taking up evaluation of the answerbooks.
(ii) Instructions given in the marking scheme are to be followed strictly so that there may be uniformity in evaluation.
(iii) Mistakes in the answers are to be underlined or encircled.
(iv) Examiners need not hesitate in awarding full marks to the examinee if the answer/is/are absolutely correct.
(v) Examiners are requested to ensure that every answer is seriously and honestly gone through before it is awarded mark/s. It will ensure the authenticity as their evaluation and enhance the reputation of the Institution.
(vi) A question having parts is to be evaluated and awarded partwise.
(vii) If an examinee writes an acceptable answer which is not given in the marking scheme, he or she may be awarded marks only after consultation with the head-examiner.
(viii) If an examinee attempts an extra question, that answer deserving higher award should be retained and the other scored out.
(ix) Word limit wherever prescribed, if violated upto $10 \%$. On both sides, may be ignored. If the violation exceeds $10 \%$, 1 mark may be deducted.
(x) Head-examiners will approve the standard of marking of the examiners under them only after ensuring the non-violation of the instructions given in the marking scheme.
(xi) Head-examiners and examiners are once again requested and advised to ensure the authenticity of their evaluation by going through the answers seriously, sincerely and honestly. The advice, if not headed to, will bring a bad name to them and the Institution.

## महत्त्वपूर्ण निर्देश :

(i) अंक-योजना का उद्देश्य मूल्यांकन को अधिकाधिक वस्तुनिष्ठ बनाना है। अंक-योजना में दिए गए उत्तर-बिन्दु अंतिम नहीं हैं। ये सुझावात्मक एवं सांकेतिक हैं। यदि परीक्षार्थी ने इनसे भिन्न, किन्तु उपयुक्त उत्तर दिए हैं, तो उसे उपयुक्त अंक दिए जाएँ।
(ii) शुद्ध, सार्थक एवं सटीक उत्तरों को यथायोग्य अधिमान दिए जाएँ।
(iii) परीक्षार्थी द्वारा अपेक्षा के अनुरूप सही उत्तर लिखने पर उसे पूर्णांक दिए जाएँ।
(iv) वर्तनीगत अशुद्धियों एवं विषयांतर की स्थिति में अधिक अंक देकर प्रोस्माहित न करें।
(v) भाषा-क्षमता एवं अभिव्यक्ति-कौशल पर ध्यान दिया जाए।
(vi) मुख्य-परीक्षकों।उप-परीक्षकों को उत्तर-पुस्तिकाओं का मूल्यांकन करने के लिए केवल Marking Instructions/ Guidelines दी जा रही है, यदि मूल्यांकन निर्देश में किसी प्रकार की जुचि हो, प्रश्न का उत्तर स्पष्ट न हो, मूल्यांकन निर्देश में दिए गए उत्तर से अलग कोई और भी उत्तर सही हो, तो परीक्षक, मुख्य-परीक्षक से विचार-विमर्श करके उस प्रश्न का मूल्यांकन अपने विवेक अनुसार करें।

## SET - A

## SECTION - A

1. $\mathrm{LCM}=60, \mathrm{HCF}=4, \mathrm{HCF}<\mathrm{LCM}$

Ans. (B) 1
2. $x^{3}+1$

Ans. (D) 1
3. $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \Rightarrow$ Parallel lines

Ans. (C) 1
4. $-10,-6,-2,2 \ldots \ldots$.

Ans. (C) 1
3553/3503/(Set : A, B, C \& D)
P. T. O.
( 4 )
5. $-77=\mathrm{a}+(n-1) d=10+29 \times(-3)$

6.
7. $\sqrt{5}: \sqrt{3}$
8. 2
9. Two
10. Fourth
11. $\left(\frac{3}{2}, 2\right)$
12. False
13. False
14. $\frac{\theta}{360} \times \pi R^{2}$
15. $\mathrm{CSA}=\pi r l=\pi r \sqrt{r^{2}+h^{2}}=20 \pi \mathrm{~cm}^{2}$
16. 0

3553/3503


Ans. (C) 1

Ans. (C) 1

Ans. (D) 1
Ans. (B) 1
1

1
1

Ans. (D) 1

Ans. (B) 1
Ans. (B) 1

## SECTION - B

17. Let $\sqrt{5}$ is rational number.
$\therefore \sqrt{5}=q / p, p, q$ are co-prime integers and $p \neq 0$

Squaring and simplifying, we get
$q^{2}=5 p^{2}$
$\Rightarrow 5$ divides $q^{2}$
$\Rightarrow 5$ divides $q$ So we can write $q=5 . \mathrm{k}$ for some interger $k^{1}$
putting the value of $q$ in equation (1), we get

$$
\begin{array}{ll} 
& 5 p^{2}=25 k^{2} \\
\text { or } & p^{2}=5 k^{2} \\
\Rightarrow \quad & 5 \text { divides } p^{2} \\
\Rightarrow \quad & 5 \text { divides } p
\end{array}
$$

Hence 5 is common factor of $p$ and $q$. Contradiction has arisen. Our assumption that $\sqrt{5}$ is rational is wrong. Hence $\sqrt{5}$ is an irrational number.
18. Zeroes are $\frac{1}{4},-1$

Sum of the zeroes $=\frac{1}{4}-1=-\frac{3}{4}$
Product of zeroes $=\frac{1}{4} \times-1=-\frac{1}{4}$
$\therefore$ Polynomial is $x^{2}+\frac{3}{4} x-\frac{1}{4}$
19. Let $A B$ denote the lamp-post and $C D$ the girl after walking for 4 seconds away from the lamppost. Let DE is shadow of the girl. Distance travelled in 4 seconds is $1.2 \times 4=4.8 \mathrm{~m}=\mathrm{BD}$

$\Delta \mathrm{ABE}$ and $\triangle \mathrm{CDE}$ are similair $(\underline{E}=\underline{E}, \underline{B}=\underline{D})$
$\therefore \frac{A B}{C D}=\frac{B E}{D E}$
or $\frac{3.6}{.9}=\frac{4.8+D E}{D E}$
or $4 \mathrm{DE}=4.8+\mathrm{DE}$
or $3 \mathrm{DE}=4.8$
or $\mathrm{DE}=1.6 \mathrm{~m}$
20. $A B C$ is a given triangle and $A, B, C$ are its interior angles. We know that in any triangle sum of angle is $180^{\circ}$.

$$
\begin{aligned}
& \therefore \mathrm{A}+\mathrm{B}+\mathrm{C}=180 \\
& \text { or } \frac{B+C}{2}=90-A / 2
\end{aligned}
$$

$$
1
$$

L.H.S. $=\sin \left(\frac{B+C}{2}\right)=\sin (90-A / 2)=\cos A / 2$ = R.H.S. 1
21. Length of fence $=\frac{5275}{25}=211 \mathrm{~m}$

Let $d$ be diameter of the field; then circumference

$$
\begin{aligned}
& \pi d=211 \\
& d=\frac{211}{22} \times 7=\frac{1477}{22}=67.14(\mathrm{app} .) \mathrm{m} \\
& \text { SECTION }-\mathbf{C}
\end{aligned}
$$

22. Given equation are

$$
\begin{gather*}
.2 x+.3 y=1.3 \\
.4 x+.5 y=2.3 \\
\text { or } \quad 2 x+3 y=13 \ldots \ldots \ldots(1) \\
4 x+5 y=23 \ldots \ldots . .(2)  \tag{2}\\
\text { opreating } 2(1)-(2), \text { we get } \\
y=3 \ldots \ldots . .(3)
\end{gather*}
$$

putting $y=3$ in eq. (1) we get 1

$$
x=2
$$

Hence $x=2$ and $y=3$ is the solution of given equs.
23. Let $n,(n+1)$ are two positive consecutive numbers (integers) and it is given that

$$
\begin{equation*}
n^{2}+(n+1)^{2}=365 \tag{1}
\end{equation*}
$$

on simplification we get

$$
\begin{array}{ll}
\text { or } & n^{2}+n-182=0 \\
\text { or } & (n+14)(n-13)=0
\end{array}
$$

$\therefore \quad n=13, n+1=14$
1
Hence 13, 14 are two integers whose sum of square is 365 .
24. Three digit numbers which are divisible by 7 are $105,112,119$, $\qquad$ 994.

These numbers are in A.P. suppose 994 is $n$th term of A.P.
$\therefore 994=105+(n-1)(7)$
$\Rightarrow \quad n-1=127$
or $n=128$.
25. Let $C_{1}$ and $C_{2}$ are two circle having same centre $O$.

Let a chord AB of the larger circle $\mathrm{C}_{2}$ which touches the smaller circle $\mathrm{C}_{1}$ at the point P . Join OP , then AB is tangent to $\mathrm{C}_{1}$ at P and OP is its radius.

$\therefore \mathrm{OP} \perp \mathrm{AB}$
$A B$ is a chord of the circle $C_{2}$
and $\mathrm{OP} \perp \mathrm{AB}$. Therefore OP is bisector of the chord AB (the perpendicular from centre bisects the chord)
$\therefore \mathrm{AP}=\mathrm{BP}$.
26. Well-shuffling ensures equally likely outcomes. 1

There are 2 kings of red colour in a deck. Let E be the event "the card is king of red. colour". 1
$\therefore$ Total favourable cases to $\mathrm{E}=2 \quad 1$
and Total possible outcomes $=52 \quad 1$
$\therefore \mathrm{P}(\mathrm{E})=\frac{2}{52}=\frac{1}{26}$
27. Area of $\Delta$ formed by three collinear points is zero. 3
$\therefore \frac{1}{2}[2(k+3)+4(-3-3)+6(3-k)]=0$
or $2 k+6-24+18-6 k=0$
1
or $\quad-4 k=0$
or $k=0$

## SECTION - D

28. Suppose the breadth is $x \mathrm{~m}$ and length is $2 x \mathrm{~m}$ of a rectangular mango grove. Then area is

$$
\begin{equation*}
x(2 x)=800 \tag{2}
\end{equation*}
$$

or $x^{2}=400$
or $x=20 \mathrm{~m}$
2
$\therefore$ length $=2 \times x=2 \times 20=40 \mathrm{~m}$ and breadth is 20 m .
Yes it is possible having length 40 m and breadth 20 m .
29. Taking L.H.S. $=\frac{\sin \theta+\cos \theta-1}{\sin \theta-\cos \theta+1}$, dividing $N$ and $D$ by $\cos \theta$, we get 1

$$
\begin{align*}
& =\frac{\tan \theta+1-\sec \theta}{\tan \theta-1+\sec \theta} \\
& =\frac{(\tan \theta-\sec \theta+1)}{(\tan \theta+\sec \theta)-\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}  \tag{1}\\
& =\frac{(\tan \theta-\sec \theta+1)}{(\tan \theta+\sec \theta)(1-\sec \theta+\tan \theta)} \\
& =\frac{1}{\tan \theta+\sec \theta}=\text { R.H.S. }
\end{align*}
$$

## OR

Let height of girl is $1.2 \mathrm{~m}=\mathrm{AF}$ and height of ballon is from earth surface $\mathrm{DE}=\mathrm{CB}=88.2 \quad 2$


## 3553/3503/(Set : A, B, C \& D)

$\therefore$ Height at the level of girl $=88.2-1.2=81 \mathrm{~m}$
Then $m$ AALM
$\tan 60^{\circ}=\frac{81}{A L}$
$\therefore \mathrm{AL}=\frac{81}{\sqrt{3}} \mathrm{~m}=27 \sqrt{3} \mathrm{~m}$.
In $\triangle \mathrm{AMC}, \tan 30^{\circ}=\frac{81}{A M}$
$\therefore$ AM $81 \sqrt{3} \mathrm{~m}$
Required distance $=81 \sqrt{3}-27 \sqrt{3}=54 \sqrt{3} \mathrm{~m}$
30. Draw a line $A B=7.6 \mathrm{~cm}$. Draw any ray $A X$, making an acute angle with AB.
2 Draw another ray By parallel to AX by making $\lfloor A B Y=\lfloor B A X$


2 Locate 5 points
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$ and $\mathrm{A}_{5}$ on AX
and 8 points $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{\mathrm{u}}, \mathrm{B}_{4}, \mathrm{~B}_{5}, \mathrm{~B}_{6} \mathrm{~B}_{7}$ and $\mathrm{B}_{8}$ on $B Y$ such that $A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}$ $=\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}=\mathrm{B}_{5} \mathrm{~B}_{6}=$ $\mathrm{B}_{6} \mathrm{~B}_{7}=\mathrm{B}_{7} \mathrm{~B}_{8}$.
Join $A_{5} B_{8}$ which cut $A B$ line at $C$.
Then $\mathrm{AC}: \mathrm{CB}=5: 8$.
Justification $\Delta^{\prime}$ s AC $\mathrm{A}_{5}$ and $\mathrm{BC} \mathrm{B}_{8}$ are similar

$$
\frac{A A_{5}}{B B_{8}}=\frac{A C}{C B}=\frac{5}{8}
$$

31. Volume of the cuboid $\forall=5.5 \times 10 \times 3.5 \mathrm{~cm}^{3}$

Volume of the silver one coin $=.2 \times \frac{22}{7} \times(.875)^{2}$ $\mathrm{cm}^{3} 2$

$$
\begin{aligned}
\text { Number of silver coin } & =\frac{5.5 \times 10 \times 3.5 \times 7}{.2 \times 22 \times .875 \times .875} \\
& =400 \mathrm{coins}
\end{aligned}
$$

32. 

| Class <br> Intervales | Frequency | Cumulative <br> frequency |
| :--- | :---: | :---: |
| Below 140 | 4 | 4 |
| $140-145$ | 7 | 11 |
| $145-150$ | 18 | 29 |
| $150-155$ | 11 | 40 |
| $155-160$ | 6 | 46 |
| $160-165$ | 5 | 51 |

Median class $21 / 2$
3553/3503/(Set : A, B, C \& D)

Now $\frac{n}{2}=\frac{51}{2}=25.5$, Then $145-150$ is a median class. Hence $l=145, c . f=11, f=18, h=5 \quad 21 / 2$

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{n}{2}-c . f .}{f}\right) \times h \\
& =145+\left(\frac{25.5-11}{18}\right) \times 5 \\
& =145+\frac{72.5}{18} \\
& =149.03 \mathrm{~cm}
\end{aligned}
$$

| OR |
| :--- |
| Daily <br> expenditure <br> (in ₹) Number of <br> Households <br> $\boldsymbol{f} \boldsymbol{i}$ Mid <br> value <br> $\boldsymbol{x}$ $\boldsymbol{d}_{\boldsymbol{i}}=$ <br> $\boldsymbol{x} \boldsymbol{-}$ <br> $\mathbf{2 2 5}$ $\boldsymbol{u}_{\boldsymbol{i}}=$ <br> $\boldsymbol{d}_{\boldsymbol{i}}$ $\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$ <br> $100-150$ 4 125 -100 -2 -8 <br> $150-200$ 5 175 -50 -1 -5 <br> $200-250$ 12 225 0 0 0 <br> $250-300$ 2 275 50 1 2 <br> $300-350$ 2 325 100 2 4 <br> $\Sigma f_{i}$     25 <br>       <br> $\bar{x}=225+\frac{(-7)}{25} \times 50=211$      |

## SECTION - A

1. $\mathrm{LCM}>\mathrm{HCF}$
2. $x+\sqrt{2}$
3. Coincident lines
4. $-10,-6,-2,2$ $\qquad$
5. $a_{20}=-10+19 \times 4=66$
6. $\overbrace{M 2}^{2.7} \overbrace{P}^{2}$

7. $9: 4$
8. 0
9. Infinitely many
10. Third
11. $(0,0)$
12. False
13. True
14. $\frac{\theta}{360} \times 2 \pi r$

3553/3503/(Set : A, B, C \& D)

Ans. (A) 1
Ans. (D) 1
Ans. (B) 1
Ans. (C) 1
Ans. (A) 1

Ans. (C) 1

Ans. (C) 1
Ans. (C) 1
Ans. (C) 1
Ans. (B) 1
Ans. (B) 1 1 1

Ans. (B) 1
15. $20 \pi \mathrm{~cm}^{2}$

Ans. (B) 1
16. $\frac{1}{6}$

Ans. (C) 1

## SECTION - B

17. Suppose $\sqrt{7}$ is rational number. 1
$\therefore \sqrt{7}=p / q, p, q$ are co-prime integers and $q \neq 0$
Squaring and simplifying, we get

$$
\begin{equation*}
p^{2}=7 q^{2} \tag{1}
\end{equation*}
$$

$\qquad$
$\Rightarrow 7$ divides $p^{2}$
$\Rightarrow 7$ divides $p$ So we can write $p=7 . \mathrm{k}$ for some integer $k$.
putting the value of $p$ in equation (1), we get

$$
\begin{array}{ll} 
& 7 q^{2}=7^{2} k^{2} \\
\text { or } & q^{2}=7 k^{2} \\
\Rightarrow & 7 \text { divides } p^{2} \\
\Rightarrow & 7 \text { divides } p
\end{array}
$$

Hence 7 is common factor of $p$ and $q$. Contradiction has arisen. Our assumption that $\sqrt{7}$ is rational is wrong. Hence $\sqrt{7}$ is an irrational number.
18. Sum of the zeroes $=\frac{1}{4}$

Product of the zeroes $=4$
$\therefore$ Polynomial is $x^{2}-\frac{1}{4} x+4$ 1
19. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
so $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}$
and $\underline{A}=\underline{P}, \underline{B}=\underline{Q}$ and $\underline{C}=\underline{R}$
But $\mathrm{AB}=2 \mathrm{AM}$ and $\mathrm{PQ}=2 \mathrm{PN}$
(As CM and RN are medians)
So that from equations (1) and (3), we get

$$
\begin{align*}
& \frac{2 A M}{2 P N}=\frac{C A}{R P} \\
\Rightarrow \quad & \frac{A M}{P N}=\frac{C A}{R P} . \tag{4}
\end{align*}
$$

Also $\lfloor M A C=\underline{N P R}$
From (4) and (5), we get

$$
\Delta \mathrm{AMC} \sim \Delta \mathrm{PNR}
$$


20. The value of

$$
\frac{\tan 65^{\circ}}{\cot 25^{\circ}}=\frac{\tan \left(90^{\circ}-25^{\circ}\right)}{\cot 25^{\circ}}=\frac{\cot 25^{\circ}}{\cot 25^{\circ}}=1 \quad 1+1+1
$$

## 3553/3503/(Set : A, B, C \& D)

21. Area of circular field $=\pi r^{2}=\frac{22}{7} \times 5 \times 5$ sq. m. $1^{1 / 2}$ Total cost of ploughing $=\frac{22}{7} \times 25 \times \frac{3}{2}=\frac{825}{7}=$ ₹ 117.85 App. $1 ½$

## SECTION - C

22. Given equations are $3 x-y=3$ $\qquad$ 1

$$
\begin{equation*}
x-y=4 \tag{1}
\end{equation*}
$$

$\qquad$
Subtracting (2) from (1), we get

$$
\begin{align*}
& 2 x \\
& =-1  \tag{1}\\
\text { or } \quad x & =-\frac{1}{2}
\end{align*}
$$

Putting the value of $x=-\frac{1}{2}$ in eq. (1), we get 1

$$
y=-\frac{9}{2}
$$

Hence $x=-\frac{1}{2}$ and $y=-\frac{9}{2}$ is the solution of given equations.
23. Let $x$ and $y$ are two numbers s.t.

$$
\begin{align*}
& x+y=27  \tag{1}\\
& x y=182 . \tag{2}
\end{align*}
$$

$$
1
$$

Putting the value of $x=27-y$ from eq. (1) in equation (2), we get

$$
\begin{array}{ll} 
& y(27-y)=182 \\
\text { or } & y^{2}-27 y+182=0
\end{array}
$$

$\therefore(y-14)(y-13)=0$
$\therefore y=14, \quad$ and $y=13$
then $x=13 \quad$ then $x=14$
Hence two numbers are 13 , and 14 .
24. Numbers divisible by 4 between 10 and 250 are $12,16,20$, $\qquad$ 248.

Let $n$th is the last term of this A.P. whose first term is 12 and c.d. is 4 .
$a_{n}$ th $=248=12+(n-1) 4$
or $n-1=\frac{236}{4}$ or $n=60$.
25. Same in Set A.
26. Let E be the event "The coming card is face card."
$\therefore$ Total favourable cases to event $\mathrm{E}=12$
and Total possible outcomes $=52$
$\therefore \mathrm{P}(\mathrm{E})=\frac{12}{52}=\frac{3}{13}$
27. Area of triangle formed by three collinear points is zero.
$\therefore \frac{1}{2}[8(-4+5)+k(-5-1)+2(.1+4)]=0$
$\therefore 8-6 k+10=0$
or $\quad 6 k=18$
or $k=3$

## SECTION - D

28. Let the present ages of two friends are $x$ years and $y$ years respectively. Then

$$
\begin{equation*}
x+y=20 \tag{1}
\end{equation*}
$$

$\qquad$
Four years ago, the ages are

$$
\begin{equation*}
(x-4)(y-4)=48 \tag{2}
\end{equation*}
$$

$$
1
$$

Putting $y=20-x$ from equation (1) in equation (2) we get

$$
\begin{align*}
& \quad(x-4)(20-x-4)=48  \tag{2}\\
& \text { or } \quad(x-4)(x-16)+48=0 \\
& \text { or } \quad x^{2}-20 x+112=0 \ldots \ldots \ldots \ldots(3)  \tag{3}\\
& \text { on solving equation (3), we get imaginary values } \\
& \text { of } x \text {. This shows that It is not possible. }
\end{align*}
$$

29. Taking L.H.S. $=\frac{\cos A-\sin A-1}{\cos A+\sin A-1}=\frac{\cot A-1+\operatorname{cosec} A}{\cot A+1-\operatorname{cosec} A}$
on dividing $N \& D$ by $\sin \mathrm{A}$

$$
\begin{aligned}
& =\frac{(\cot A+\operatorname{cosec} A)-\left(\operatorname{cosec}^{2} A-\cot ^{2} A\right)}{(\cot A-\operatorname{cosec} A+1)} \\
& =\frac{(\cot A+\operatorname{cosec} A)(1-\operatorname{cosec} A+\cot A)}{(1-\operatorname{cosec} A+\cot A)} \\
& =\cot A+\operatorname{cosec} A=\text { R.H.S. }
\end{aligned}
$$

## OR

$A$ and $B$ represent points on the bank on opposite sides of the river, so that AB is the width of the river P is a point on the bridge at a height of 3 m a.e. $D P=3 \mathrm{~m}$ we want to determine the width of the river which is equal to the side $A B$ of the $\triangle A P B$.

Now $A B=A D+D B$
In right $\triangle A P D ;\left\lfloor A=30^{\circ}\right.$

$$
\tan 30^{\circ}=\frac{P D}{A D}
$$

or $\quad A D=3 \sqrt{3} \mathrm{~m}$
Also in right $\triangle P B D,\left\lfloor B=45^{\circ}\right.$ so $B D=P D=3 \mathrm{~m}$

$$
\therefore A B=B D+A D=3+3 \sqrt{3}=3(1+\sqrt{3}) \mathrm{m}
$$

Hence width of the river is $3(\sqrt{3}+1) \mathrm{m}$.


River
30. 1. Draw given triangle $A B C$. We want to construct another triangle whose sides are $\frac{2}{3}$ of the corresponding sides of triangle ABC.
2. Draw any ray $B X$ making an acute angle with BC on the side opposite to the vertex A.
3. Locate 3 points $B_{1}, B_{2}$ and $B_{3}$ on $B X$ so that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}$.
4. Join $\mathrm{B}_{3} \mathrm{C}$ and draw a line through $\mathrm{B}_{2}$ parallel to $\mathrm{B}_{3} \mathrm{C}$ to meet BC at $\mathrm{C}^{\prime}$.
5. Draw a line through parallel to the line CA to meet $B A$ at $A^{\prime}$. Then $\Delta A^{\prime} B^{\prime} C^{\prime}$ is the required triangle.

31. Volume of a metallic sphere $=\frac{4}{3} \pi(4.2)^{3} \mathrm{~cm}^{3}$

Volume of cylinder $=\pi(6)^{2} \times \mathrm{h} \mathrm{cm}^{3}$ where $h$ is height of the cylender.

$$
\begin{aligned}
& \therefore \frac{4}{3} \pi \times 4.2 \times 4.2 \times 4.2=\pi \times 36 \times h \\
& \therefore h=\frac{4.2 \times 4.2 \times 4.2}{3 \times 3 \times 3}=2.744 \mathrm{~cm}
\end{aligned}
$$

32. 

| Length in mm <br> $\boldsymbol{x}$ | Number of <br> Leaves $\boldsymbol{f}$ | c.f |
| :---: | :---: | :---: |
| $117.5-126.5$ | 3 | 3 |
| $126.5-135.5$ | 5 | 8 |
| $135.5-144.5$ | 9 | 17 |
| $144.5-153.5$ | 12 | 29 median <br> class |
| $153.5-162.5$ | 5 | 34 |
| $162.5-171.5$ | 4 | 38 |
| $171.5-180.5$ | 2 | $40=\Sigma f_{i}=N$ |

$$
\therefore \frac{N}{2}=\frac{40}{2}=20
$$

$\therefore$ Median $=144.5+\left(\frac{20-17}{12}\right) \times 9$

$$
=144.5+\frac{9}{4}=144.5+2.25=146.75 \mathrm{~mm}
$$

## OR

| Allowance <br> (in ₹) | Mid <br> value <br> $\boldsymbol{x}_{\boldsymbol{i}}$ | No. of <br> children <br> $\boldsymbol{f}$ | $\boldsymbol{u}_{i}=\frac{\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{1 8}}{\mathbf{2}}$ | $\boldsymbol{u}_{\boldsymbol{i}}$ <br> $\boldsymbol{f}_{\boldsymbol{i}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $11-13$ | 12 | 7 | -3 | -21 |
| $13-15$ | 14 | 6 | -2 | -12 |
| $15-17$ | 16 | 9 | -1 | -9 |
| $17-19$ | 18 | 13 | 0 | 0 |
| $19-21$ | 20 | $f$ | 1 | $f$ |
| $21-23$ | 22 | 5 | 2 | 10 |
| $23-25$ | 24 | 4 | 3 | 12 |
| $\mathrm{~N}=44+f$ |  |  |  |  |
| $\Sigma u_{i} f_{i}=f-20$ |  |  |  |  |

$$
\therefore 18=18+\frac{f-20}{f+44} \times 2
$$

or $\quad f-20=0 \Rightarrow f=20$

## SET - C

## SECTION - A

1. $\mathrm{LCM}>\mathrm{HCF}$
2. $x^{3}+1$
3. Coincident lines
4. $a, 2 a, 3 a, 4 a, \ldots .$.
5. $a_{10 \text { th }}=2+9 \times 5=47$


3553/3503/(Set : A, B, C \& D)

Ans. (C) 1
Ans. (D) 1
Ans. (A) 1
Ans. (C) 1
Ans. (B) 1

Ans. (D) 1
P.T. O.
7. $16: 81$
8. only one
9. $90^{\circ}$
10. First
11. $(0,0)$
12. False
13. False
14. $\left(\frac{360-\theta}{360}\right) \pi R^{2}$

Ans. (C) 1
15. CSA of hemisphere $=2 \pi r^{2}=32 \pi \mathrm{~cm}^{2}$

Ans. (A) 1
16. $\frac{1}{6}$

Ans. (A) 1

## SECTION - B

17. Put $\sqrt{3}$ is place of $\sqrt{7}$ in set $B$ and proceeding on same pattern.
18. $\therefore$ Sum of zeroes $=3$ ..... 1
Product of zeroes $=2$ ..... 1
Hence polynomial becomes $=x^{2}-3 x+2$ ..... 1
3553/3503/(Set : A, B, C \& D)
19. Both are similar triangles.

$\frac{D E}{A B}=\frac{E F}{B C}$
1
or $\frac{h}{6}=\frac{28}{4}$
or $h=7 \times 6=42 \mathrm{~m}$
where $h$ is the height of the tower.
20. The value of $\cos 48^{\circ}-\sin 42^{\circ}$

$$
\begin{aligned}
& =\cos \left(90^{\circ}-42^{\circ}\right)-\sin 42^{\circ} \\
& =\sin 42^{\circ}-\sin 42^{\circ} \\
& =0
\end{aligned}
$$

$$
1
$$

21. Area of the circular field having radius $r$

$$
\begin{equation*}
=\pi r^{2} \mathrm{~cm}^{2} \tag{1}
\end{equation*}
$$

Total cost of ploughing at the rate of $₹ 10$ per square meter $=\pi r^{2} \times 10$ $11 / 2$

$$
\begin{aligned}
\therefore 1540 & =\pi r^{2} \times 10 \\
\therefore r^{2} & =\frac{154}{22} \times 7=7^{2} \\
\text { or } r & =7 \mathrm{~m}
\end{aligned}
$$

## SECTION - C

22. Given equations are

$$
\begin{align*}
& 1.5 x-5 / 3 y+2=0 \\
& \frac{1}{3} x+0.5 y-\frac{13}{6}=0 \\
& \text { or } \quad \frac{3 x}{2}-\frac{5 y}{3}=-2 \\
& \quad \frac{x}{3}+\frac{y}{2}=\frac{13}{6} \\
& \text { or } \quad 9 x-10 y=-12 \ldots \ldots \ldots .(1)  \tag{1}\\
& 2 x+3 y=13 \ldots \ldots \ldots .(2)  \tag{2}\\
& \text { operating } 3(1)+10(2) \text {, we get } \\
& 27 x-30 y=-36 \\
& \frac{20 x+30 y=130}{47 x=94} \\
& x=2
\end{align*}
$$

Putting the value of $x=2$ in equation (1), we get

$$
\begin{equation*}
18-10 y=-12 \tag{1}
\end{equation*}
$$

or $-10 y=-30$
or $y=3$
Hence $x=2$ and $y=3$ is the solution of given eq.
24. Two-digit numbers divisible by 3 are $12,15,18$,
$\qquad$ .99 which is an A. P. whose first term is 12 and common difference is 3 . $11 / 2$
Let 99 is $n$th term $11 / 2$

$$
\begin{gathered}
99=12+(n-1)_{3} \\
\therefore n-1=\frac{87}{3}=29 \text { or } n=30
\end{gathered}
$$

## 3553/3503/(Set : A, B, C \& D)

25. 



1
Let O be the centre of circle of radius 5 cm . Join OT which intersect chord PQ at R. Then $\triangle$ TPQ is isosceles. ( $\therefore$ Then lengths of tangents drawn from an external point to a circle are equal) 1 $\therefore$ To line is the angle bisector of $\triangle P T Q$.
So OT $\perp \mathrm{PQ}$, OT bisects PQ at R.

$$
\therefore P R=R Q=4 \mathrm{~cm}
$$

In right angled $\triangle \mathrm{PRQ}, \mathrm{OR}=\sqrt{O P^{2}-P R^{2}}$

$$
=\sqrt{5^{2}-4^{2}}=3 \mathrm{~cm}
$$

We know that

$$
\begin{aligned}
& \left\lfloor T P R+\left\lfloor R P Q=90^{\circ}=\lfloor T P R+\bigsqcup P T R\right.\right. \\
\Rightarrow \quad & \lfloor R P O=\lfloor P T R
\end{aligned}
$$

Therefore right triangle TRP ~ right triangle PRO
$\Rightarrow \frac{T P}{P O}=\frac{R P}{R O} \Rightarrow T P=\frac{20}{3} \mathrm{~cm}$.

## Alter Method

$$
\begin{aligned}
& \text { Let } T P=x \text { and } T R=y \\
& \left.x^{2}=y^{2}+16 \text { (Taking right } \Delta \mathrm{PRT}\right) \\
& \left.x^{2}+5^{2}=(y+3)^{2} \text { (Taking right } \Delta \mathrm{OPT}\right)
\end{aligned}
$$

On solving we get the value of $x=\frac{20}{3}$.
26. Let E be the event 'card drawn is Jack of hearts' Then number of outcomes favourable to the event $\mathrm{E}=1$.
The number of possible outcomes $=52 \quad 1$
$\therefore \mathrm{P}(\mathrm{E})=\frac{1}{52}$
27. Area of a triangle $=\frac{1}{2}[1(6+5)+(-4)(-5+1)+(-3)(-1-6)]$ $11 / 2$

$$
\frac{1}{2}[11+16+21)=\frac{48}{2}=24 \text { sq. unit } \quad 11 / 2
$$

## SECTION - D

28. Let length and breadth of a park are $x \mathrm{~cm}$ and $y \mathrm{~cm}$.
then $\quad 2(x+y)=80$

$$
\therefore x+y=40
$$

and $\quad x y=400$
$2^{1 / 2}$
Putting the value of $y=40-x$ in equation (2) we get

$$
x(40-x)=400
$$

$$
\begin{array}{ll}
\text { or } & x^{2}-40 x+400=0 \\
\therefore & (x-20)^{2}=0 \text { or } x=20 \mathrm{~cm} \\
& \text { then } y=40-20=20 \mathrm{~cm}
\end{array}
$$

29. L.H.S. $=\frac{\cos A+\sin A-1}{\cos A-\sin A+1}$

Dividing $N \& D$ by $\sin \mathrm{A}$, we get

$$
\begin{aligned}
& =\frac{\cot A-\operatorname{cosec} A+1}{\cot A+\operatorname{cosec} A-1} \\
& =\frac{\cot A-\operatorname{cosec} A+1}{(\cot A+\operatorname{cosec} A)-\left(\operatorname{cosec}^{2} A-\cot ^{2} A\right)} \\
& =\frac{11 / 2}{(\cot A+\operatorname{cosec} A)(1-\operatorname{cosec} A+\cot A)} \\
& =\frac{1}{\cot A+\operatorname{cosec} A}=\text { R.H.S. } \\
& \text { OR }
\end{aligned}
$$

After breaks, and form a triangular form. Let $h=A B$ be the broken part of tree.


$$
\therefore h=8 \sqrt{3} \mathrm{~m}
$$

$$
2^{1 / 2}
$$

30. Same in Set B.

31. The earth taken out from the well of diameter 3 m and 14 m deep.
$\therefore$ Volume of the earth taken out $=\pi(1.5)^{2} \times 14 \mathrm{~m}^{3}$
Then the taken out earth has been spread evenly all around the well in the shape of circular ring of width 4 m . Let $h$ is height of the embankment. Then volume of this space is equal to the volume of the earth taken out from the well.
A.T.Q.

$$
\begin{align*}
& \pi(1.5)^{2} \times 14=22 \times 14 \times \mathrm{h}  \tag{2}\\
\mathrm{~h}= & \frac{22}{7} \times \frac{1.5 \times 15 \times 14}{14 \times 22} \\
& =\frac{1.5 \times 1.5}{7}=\frac{2.25}{7}=0.32 \mathrm{~m}, \quad=32 \mathrm{~cm}
\end{align*}
$$

32. 

| No. of <br> letters $\boldsymbol{x}$ | No. of <br> surnames $\boldsymbol{f}$ | commulative <br> frequency c.f. |  |
| :---: | :---: | :--- | :---: |
| $1-4$ | 6 | 6 |  |
| $4-7$ | 30 | 36 |  |
| $7-10$ | 40 | 76 Median class |  |
| $10-13$ | 16 | 92 |  |
| $13-16$ | 4 | 96 |  |
| $16-19$ | 4 | 100 |  |
|  |  |  |  |

$\therefore \frac{N}{2}=\frac{100}{2}=50$
$\therefore$ Median $=7+\left(\frac{50-36}{40}\right) \times 3$

$$
=7+\frac{14 \times 3}{40}=\frac{322}{40}=8.05
$$

OR

| Daily <br> Wages (in ${ }^{\text {) }}$ | No. of workers $f$ | Mid value $x$ | $u=\frac{x-150}{20}$ | $u_{i} \boldsymbol{f}_{i}$ |
| :---: | :---: | :---: | :---: | :---: |
| 100-120 | 12 | 110 | -2 | -24 |
| 120-140 | 14 | 130 | -1 | -14 |
| 140-160 | 8 | 150 | 0 | 0 |
| 160-180 | 6 | 170 | 1 | 6 |
| 180-200 | 10 | 190 | 2 | 20 |
|  | 50 |  |  |  |

$$
\begin{aligned}
\text { Mean } & =150+\frac{(-12)}{50} \times 20 \\
& =150-4.8 \\
& =₹ 145.2
\end{aligned}
$$

## SET - D

## SECTION - A

1. $g>l$

Ans. (A) 1
2. $x^{2}+1$

Ans. (B) 1
3. Intersecting lines
4. $a, 2 a, 3 a, 4 a, \ldots \ldots$
5. $a_{20}=2+19 \times 5=97$
6.

7. $16: 81$

Ans. (C) 1
8. one

Ans. (A) 1
9. Two
10. Third

Ans. (B) 1
Ans. (C) 1
3553/3503/(Set : A, B, C \& D)
11. $(-1,7) \frac{A \quad 2: 3 \quad 13}{C}(4,-3)$

$$
\left(\frac{8-3}{5}, \frac{-6+21}{5}\right)=(1,3)
$$

Ans. (A) 1
12. True

## 13. False

14. $\frac{P}{720} .2 \pi r^{2}$

Ans. (D) 1
15. $\pi r^{2}$
16. 0

Ans. (B) 1

## SECTION - B

17. Replace $\sqrt{3}$ by $\sqrt{2}$ in Set $C$ and proceding on same pattern.
18. $\therefore$ Sum of zeroes $=5 \quad 1$ Product of zeroes $=3$ 1
$\therefore$ Polynomial becomes $=x^{2}-5 x+3 \quad 1$
3553/3503/(Set : A, B, C \& D)
P. T. O.
19. Let AB be the ladder and CA be the wall with the window at A.

$$
\therefore \quad B C=2.5 \mathrm{~m} \text { and } C A=6 \mathrm{~A}
$$



Then Pythagoras Theorem, we have

$$
\begin{aligned}
\mathrm{AB}^{2} & =\mathrm{BC}^{2}+\mathrm{AC}^{2} \\
& =(2.5)^{2}+6^{2} \\
& =42.25 \\
\text { so } \mathrm{AB} & =6.5 \mathrm{~m}
\end{aligned}
$$

20. $\cot 85^{\circ}+\cos 75^{\circ}$

$$
\begin{aligned}
& =\cot \left(90^{\circ}-5^{\circ}\right)+\cos \left(90^{\circ}-75^{\circ}\right) \\
& =\tan 5^{\circ}+\sin 15^{\circ}
\end{aligned}
$$

21. Same as in Set C.

## SECTION - C

22. $\sqrt{2} x+\sqrt{3} y=0$ $\qquad$
$\sqrt{3} x-\sqrt{8} y=0$ $\qquad$
operating $\sqrt{3}$ eq (1) $-\sqrt{2}$ eq(2), we get

$$
7 y=0 \Rightarrow y=0
$$

putting $y=0$ in eq. (1) we get

$$
\begin{aligned}
& \quad x=0 \\
& \therefore \quad x=0, y=0 \text { are the solution of given } \\
& \text { equation. }
\end{aligned}
$$

24. Given equation is

$$
\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0
$$

Dividing both sides by $\sqrt{2}$, we get

$$
\begin{array}{ll} 
& x^{2}+\frac{7}{\sqrt{2}} x+5=0 \\
\text { or } & x^{2}+\frac{5}{\sqrt{2}} x+\sqrt{2} x+5=0 \\
\text { or } & x(x+\sqrt{2})+\frac{5}{\sqrt{2}}(x+\sqrt{2})=0 \\
\text { or } & (x+\sqrt{2})\left(x+\frac{5}{\sqrt{2}}\right)=0
\end{array}
$$

Case I

$$
\therefore \quad x+\sqrt{2}=0 \Rightarrow x=-\sqrt{2}
$$

Case II

$$
\begin{aligned}
& \quad x+5 / \sqrt{2}=0 \\
& \therefore \quad x=-\frac{5}{\sqrt{2}} \\
& \text { Hence }-\sqrt{2},-5 / \sqrt{2} \text { are roots of given eq. }
\end{aligned}
$$

24. $12,16,20, \ldots \ldots . . . . . . .96$ are two digit numbers 2

Which are divisible by 4 . They form an A.P. whose first term is 12 and $d=$ common difference is 4 . Suppose 96 is nth term. Then 2
$a_{n}=96=12+(n-1) 4$
or $n-1=\frac{84}{4}=21$
or $n=22$
25. Same as in Set C.
26. Let $E$ be the event "card drawn is queen of diamonds'. Then number of out comes favourable to the even $\mathrm{E}=1$.
The nubmer of possible outcomes $=52$
$\therefore \mathrm{P}(\mathrm{E})=\frac{1}{52}$
27. Area of triangle $=\frac{1}{2}[-1.5(-2-4)+6(4-3)-3$ $(3+2)]$

$$
=\frac{1}{2}[9+6-15)=0
$$

If the area of a triangle is 0 square units, then its vertices will be collinear.

## 3553/3503/(Set : A, B, C \& D)

## SECTION - D

28. Given quadratic equation is

$$
2 x^{2}+k x+3=0
$$

If the roots of this equation are equal then discriment should be zero.

$$
\begin{array}{ll}
\therefore & k^{2}-4.2 .3=0 \\
\text { or } & k^{2}=24 \\
\text { or } & k= \pm 2 \sqrt{6} \tag{1/2}
\end{array}
$$

29. Take L.H.S. $=\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}$; Dividing $N$ and $D$ by $\cos \theta$, we get

$$
\begin{aligned}
& =\frac{\tan \theta-1+\sec \theta}{\tan \theta+1-\sec \theta} \\
& =\frac{\tan \theta+\sec \theta-\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}{\tan \theta+1-\sec \theta} \quad 2+2+2 \\
& =\frac{(\tan \theta+\sec \theta)(1-\sec \theta+\tan \theta)}{(1-\sec \theta+\tan \theta)} \\
& =\tan \theta+\sec \theta=\text { R.H.S. }
\end{aligned}
$$

## OR

AB is the chimney, CD the height of the observer and $\left\lfloor A D E=45^{\circ}\right.$ angle of elevation. In triangle ADE right-angled at $E$.

$$
\begin{array}{rlr}
\text { Height of chimney } & =\mathrm{AB}=\mathrm{AE}+\mathrm{EB} \\
& =\mathrm{AE}+\mathrm{DC} & \\
& =\mathrm{AE}+1.5 & \\
& (\because \mathrm{CD}=1.5 \mathrm{~m}) & 2^{1 / 2} 2 \\
3553 / 3503 /(\text { Set }: \text { A, B, C \& D) } & & \text { P.T.O. }
\end{array}
$$

In $\triangle \mathrm{ADE}$,

$$
\tan 45^{\circ}=\frac{A E}{D E}=\frac{A E}{C B} \Rightarrow A E=C B=28.5 \mathrm{~m}
$$

(Given)

$$
\begin{array}{r}
\therefore \quad \text { Height of chimney }=\mathrm{AB}=28.5+1.5=30 \mathrm{~m} \\
21 / 2
\end{array}
$$

30. 



Construction is same as in Set C.
31. Volume of three sphere having radii $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm is

$$
\begin{aligned}
V & =\frac{4}{3} \pi\left(6^{3}+8^{3}+10^{3}\right) \mathrm{cm}^{3} \\
& =\frac{4}{3} \pi(1728) \mathrm{cm}^{3}
\end{aligned}
$$

After melting form a singel sphere whose radius is Rcm and volume is $\mathrm{V}_{1}$.

$$
\begin{array}{ll}
\therefore & V_{1}=\frac{4}{3} \pi R^{3}=V=\frac{4}{3} \pi(1728) \\
& \Rightarrow R^{3}=1728 \\
& \Rightarrow R=12 \mathrm{~cm}
\end{array}
$$

32. 

| Weight <br> (in kg) | No. of <br> Students $\boldsymbol{f}$ | c.f. |
| :---: | :---: | :--- |
| $40-45$ | 2 | 2 |
| $45-50$ | 3 | 5 |
| $50-55$ | 8 | 13 |
| $55-60$ | 6 | 19 Median class |
| $60-65$ | 6 | 25 |
| $65-70$ | 3 | 28 |
| $70-75$ | 2 | 30 |

$$
\begin{aligned}
\therefore \frac{N}{2}=\frac{30}{2} & =15 \\
\text { Median } & =55+\left(\frac{15-13}{6}\right) \times 5 \\
& =55+1.666 \\
& =56.67 \mathrm{~kg}
\end{aligned}
$$

| Literacy <br> rate (in \%) | No. of <br> cities $f_{\boldsymbol{i}}$ | Mid <br> value <br> $\boldsymbol{x}_{\boldsymbol{i}}=$ | $\boldsymbol{u}_{\boldsymbol{i}}=\frac{\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{7 0}}{\mathbf{1 0}}$ | $\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{f}_{\boldsymbol{i}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $45-55$ | 3 | 50 | -2 | -6 |
| $55-65$ | 10 | 60 | -1 | -10 |
| $65-75$ | 11 | 70 | 0 | 0 |
| $75-85$ | 8 | 80 | 1 | 8 |
| $85-95$ | 3 | 90 | 2 | 6 |
|  | $\mathrm{~N}=35$ |  | $\Sigma u_{i}=0$ |  |


| $\therefore$ Mean | $=70+\frac{-2}{35} \times 10$ |
| ---: | :--- |
|  | $=70-.571$ |
|  | $=69.429$ |
|  | $=69.43 \%$ |

