BSEH MARKING SCHEME

CLASS- XII Chemistry (March-2024) Code: D

 The answer points given in the marking scheme are not final. These are suggestive and indicative. If the examinee has given different, but appropriate answers, then he should be given appropriate marks.

Q.	Answers	Marks
No.		
1.	d) Benzene and Toluene	1
2.	b) Gibbs energy	1
3.	c) 0	1
4.	c) MnO ₄ -	1
5.	c) Cr ²⁺	1
6.	a) 0	1
7.	b) Bromoform	1
8.	a) tert-Butyl bromide	1
9.	c) Both of the above	1
10.	b) Conc. HNO ₃	1
11.	c) Benzaldehyde	1
12.	d) None of the above	1
13.	c) Insulin and Glucagon	1
14.	a) 0	1
15.	a) Both A and R are true, and R is the correct	1
	explanation of A.	

16.	c) A is true but R is false.	1		
17.	d) A is false but R is true	1		
18.	c) A is true but R is false.	1		
19.	The partial pressure of the gas in vapour phase (p)	2		
	is proportional to the mole fraction of the gas (x) in			
	the solution.			
	(1 mark)			
	i) To increase the solubility of CO2 in soft drinks and			
	soda water, the bottle is sealed under high pressure.			
	ii) To avoid bends the tanks used by scuba divers			
	are filled with air diluted with helium.			
	iii) At high altitudes the partial pressure of oxygen is			
	less than that at the ground level. This leads to low			
	concentrations of oxygen in the blood and tissues of			
	people living at high altitudes or climbers.			
	(Any two, ½ mark each)			
	Or			
	Given:			
	Mass of solute $(w_1) = 1$ g			
	Mass of solvent $(w_2) = 50 g$			
	$K_{f} = 5.12 \text{ K kg mol}^{-1}$			
	$\Delta T_{\rm f} = 0.40$			
	$\therefore \Delta T_f = K_f \times \frac{w_2 \times 1000}{M_2 \times w_1}$			
	(½ mark)			
	So $M_2 = K_f \times \frac{w_2 \times 1000}{\Delta T_f \times w_1}$			

	$= 5.12 \times \frac{1 \times 1000}{0.40 \times 50} \ g \ mol^{-1}$			
	(½ mark)			
	$= 256 \ g \ mol^{-1}$			
	(1/2 mark for answer, 1/2 mark for unit)			
20.	The law states that limiting molar conductivity of an			
	electrolyte can be represented as the sum of the			
	individual contributions of the anion and cation of the			
	electrolyte.			
	(1 mark)			
	 i) to calculate limiting molar conductivity of any electrolyte. ii) to calculate the degree of dissociation of weak electrolyte. 			
	iii) to calculate dissociation constant of weak electrolyte.			
	(Any two, ½ mark each)			
21.	$\begin{array}{c c} NH_{3} \\ NC \\ NC \\ Fe \\ NC \\ CN \\ CN \\ cis \end{array} \begin{array}{c} NH_{3} \\ NC \\ NC \\ Fe \\ CN \\ NC \\ NC \\ H_{3} \\ CN \\ NH_{3} \\ trans \end{array}$	2		

22.	i)		
	(1 mark)	2	
	(1 mark)		
23.	3. i) In 2,2,6 trimethyl cyclohexanone, three methyl groups are presents at α -position with respect to the ketonic (>C=O) group. Therefore, these groups cause steric hindrance during the nucleophilic attack of CN ⁻ ion so cyanohydrin is not formed. Due to the absence of methyl groups in cyclohexanone, there is no steric		
	hindrance and cyanohydrin is formed.	2	
	(1 mark)		
	ii) Semicarbazide has two amino (NH ₂) groups, out of		
	which one is involved in resonance. Electron-density		
	on this (NH_2) decreases and it does not act as a		
	nucleophile. But the other (NH ₂) group (attached o		
	NH) has a lone pair of electrons which are not		

	involved in resonance. So, this pair is available for		
	the nucleophilic attack on the carbonyl group (>C=O)		
	of aldehydes and/or ketones.		
	(1 mark)		
24.	Aldehydes and having at least one α -hydrogen		
	undergo a reaction in the presence of dilute alkali as		
	catalyst to form β -hydroxy aldehydes, this is known		
	as Aldol.		
	(1 mark)		
	dil. NaOH		
	$2 CH_3 - CHO = CH_3 - CH - CH_2 - CHO - CH_3 - CHO - CH_2 - CHO - CHO - CH_2 - CHO - CHO - CH_2 - CHO - CH$		
	3-Hydroxybutanal		
	(Aldol)		
	(1 mark)	2	
	Or		
	i) Tollen's test / Fehling's test;		
	(½ mark)		
	Ethanal gives the test while propanone does not.		
	(½ mark)		
	ii) Fehling's test;		
	(½ mark)		
	Propanal gives the test while benzaldehyde does not.		
	(½ mark)		
25.	Quaternary structure of proteins: Some of the proteins		
	are composed of two or more polypeptide chains	2	
	referred to as sub-units. The spatial arrangement of		

3

	$(1\frac{1}{2} \text{ mark for proper diagram}, \frac{1}{2} \text{ mark for each of } 3$		
	labeling)		
27.	Given:		
	$E_{cell}^{\circ} = 0.236 V$		
	Number of electrons involved in cell reaction (n) = 2		
	(½ mark)		
	$\Delta G^{\circ} = -nFE^{\circ}_{cell}$		
	(½ mark)		
	$\Delta G^{\circ} = -2 \times 96500 \times 0.236$	_	
		3	
	$\Delta G^{\circ} = -45548 J mol^{-1}$		
	(1/2 mark for answer, 1/2 mark for unit)		
	$log K_c = \frac{n \times E_{cell}^{\circ}}{0.059}$		
	(½ mark)		
	$K_c = 10^8$		
	(½ mark)		
28.	i) Diamminechloridonitrito-N-platinum (II)		
	ii) Potassium trioxalatochromate (III)	3	
	iii) Pentaamminecarbonatocobalt (III) chloride		
	(1 mark each)		
29.	Step 1: Formation of protonated alcohol.		
	H H H H H H H H H H H H H H H H H H H	3	
	(1 mark)		

Step 2: Formation of carbocation: It is the slowest step and hence, the rate determining step of the reaction. $\begin{array}{c} H \\ H \\ - \begin{array}{c} H \\ - \end{array} \end{array}{c} H \\ - \end{array} \begin{array}{c} H \\ - \end{array} \begin{array}{c} H \\ - \end{array} \begin{array}{c} H \\ - \end{array} \end{array}{c} H \end{array}{c} \end{array}{c} H \\ - \end{array} \begin{array}{c} H \\ - \end{array} \end{array}{c} H \\ - \end{array} \begin{array}{c} H \\ - \end{array} \end{array}{c} H \\ - \end{array} \end{array}{c} H \\ - \end{array} \end{array}{c} H \\ = H \\ = H \\ = H \\ = H \\ \end{array}{c} H \\ = H \\ =$ (1 mark) Step 3: Formation of ethene by elimination of a proton. $H - C \stackrel{h}{\subseteq} C^{+} \qquad \qquad H \stackrel{H}{\longrightarrow} H \stackrel{H}{\longrightarrow} C = C \stackrel{H}{\longrightarrow} H \stackrel{H}{\longrightarrow} H$ Ethene (1 mark) Or Lucas test can be used to distinguish between primary, secondary and tertiary alcohols. $(\frac{1}{2} \text{ mark})$ For this Lucas reagent (conc. HCl and ZnCl₂) is used. $(\frac{1}{2} \text{ mark})$ Alcohols are soluble in Lucas reagent while their halides are immiscible and produce turbidity in solution. $(\frac{1}{2} \text{ mark})$ In case of tertiary alcohols, turbidity is produced immediately as they form the halides easily. $(\frac{1}{2} \text{ mark})$ Secondary alcohols produce turbidity after some time. $(\frac{1}{2} \text{ mark})$ Primary alcohols do not produce turbidity at room temperature. (1/2 mark)

	Two solutions having the same osmotic pressure at				
	a given temperature are called isotonic solutions.				
	(1 mark)				
	iii) The preservation of meat by salting or the				
	preservation of fruits by adding sugar				
	(any one, 1 mark)				
	iv) 1 M KCI				
	(1 mark)				
32.	i) Position isomerism				
	(1 mark)				
	ii) 2,5-Dimethylhexane				
	(1 mark)				
	iii) $(CH_3)_2C=CH_2$				
	(1 mark)				
	iv) $(CH_3)_2C=CH_2 + HBr \xrightarrow{peroxide} (CH_3)_2CHCH_2Br$				
	(1 mark)				
	or				
	Wurtz reaction				
	(1 mark)				
33.	Given:				
	$t_{1/2} = 28.1 \ years$				
	$[R]_o = 1 \mu g$	5			
	0.693	0			
	$\because k = \frac{1}{t_{1/2}}$				
	(½ mark)				

$$\Rightarrow k = \frac{0.693}{28.1} = 0.0247 \text{ years}^{-1}$$
(½ mark)
For Case I
t = 10 years
[R] = ?

$$k = \frac{2.303}{t} \log \frac{[R]_o}{[R]}$$

$$\Rightarrow \log \frac{[R]_o}{[R]} = \frac{kt}{2.303}$$
(½ mark)

$$\Rightarrow \log \frac{1}{[R]} = \frac{0.0247 \times 10}{2.303}$$
(½ mark)

$$\Rightarrow \frac{1}{[R]} = \text{Antilog} \frac{0.0247 \times 10}{2.303}$$
(½ mark)

$$\Rightarrow [R] = 0.78 \,\mu g$$
(½ mark for answer, ½ mark for unit)
(1 mark each)
For Case II
t = 60 years
[R] = ?

$$k = \frac{2.303}{t} \log \frac{[R]_o}{[R]}$$

$$\Rightarrow log \frac{[R]_o}{[R]} = \frac{kt}{2.303}$$
(½ mark)

$$\Rightarrow log \frac{1}{[R]} = \frac{0.0247 \times 60}{2.303}$$

$$\Rightarrow \frac{1}{[R]} = Antilog \frac{0.0247 \times 60}{2.303}$$
(½ mark)

$$\Rightarrow [R] = 0.227 \,\mu g$$
(½ mark for answer, ½ mark for unit)
Or
Given for same time period:
T₁ = 298 K, reaction completed is 10 %
T₂ = 308 K, reaction completed is 25 %
A = 4 × 10¹⁰s⁻¹
For a first order reaction:
 $k_1 = \frac{2.303}{t} log \frac{100}{90}$
 $\Rightarrow k_1 = \frac{0.1055}{t}$
(½ mark)
And
 $k_2 = \frac{2.303}{t} log \frac{100}{75}$

Chemistry

$$\Rightarrow k_2 = \frac{0.2879}{t}$$
(½ mark)
According to Arrhenius equation:

$$log \frac{k_2}{k_1} = \frac{E_a}{2.303 \times R} \left[\frac{T_2 - T_1}{T_1 \times T_2} \right]$$
(½ mark)

$$\Rightarrow log \frac{0.2879}{\frac{0.1055}{t}} = \frac{E_a}{2.303 \times 8.314} \left[\frac{308 - 298}{298 \times 308} \right]$$
(½ mark)

$$\Rightarrow log \frac{0.2879}{\frac{0.1055}{t}} = \frac{E_a}{2.303 \times 8.314} \left[\frac{308 - 298}{298 \times 308} \right]$$
(½ mark)

$$\Rightarrow k = 1062 \times 10^{-1}$$
(½ mark)

$$\Rightarrow E_a = 76622.7 J mol^{-1}$$
(½ mark for unit)
For k at 318 K:
According to Arrhenius equation

$$log k = log A - \frac{E_a}{2.303 \times RT}$$
(½ mark)

$$\Rightarrow log k = log(4 \times 10^{10}) - \frac{76622.7}{2.303 \times 8.314 \times 318}$$

$$\Rightarrow k = antilog(-1.9822)$$
(½ mark)

$$\Rightarrow k = 1.042 \times 10^{-2} s^{-1}$$
(½ mark for unit)

34. The elements of the first series of the inner transition metals; 4f (Ce to Lu) are known as lanthanoids. (1 mark) General electronic configuration for lanthanoids is: $(n-2)f^{1-14}(n-1)d^{0-1}ns^2$ where n = 6. (1 mark) The steady decrease in the atomic and ionic radii of lanthanide elements with increasing atomic number is called Lanthanide contraction. (1 mark) Consequences: i) The size of the atom of the third transition series 5 is closely the same as that of the atom of the second transition series. (1 mark) ii) As there is only a minute change in the ionic radii of lanthanides, their chemical properties are the same. This makes the separation very difficult. (1 mark) Or Potassium permanganate is prepared by fusion of MnO₂ with an alkali metal hydroxide and an oxidising agent like KNO₃. $(\frac{1}{2} \text{ mark})$

ii) C ₆ H ₅ NHCOCH ₃		
	(1 mark)	
iii) $C_6H_5SO_2NHCH_3$		
	(1 mark)	
iv) C ₆ H ₅ NC		
	(1 mark)	
v) $C_6H_5N^+H_3HSO_4^-$		
	(1 mark)	