BSEH MARKING SCHEME

CLASS- XII Chemistry (March-2024) Code: A

 The answer points given in the marking scheme are not final. These are suggestive and indicative. If the examinee has given different, but appropriate answers, then he should be given appropriate marks.

Q.	Answers		
No.			
1.	a) Copper dissolved in Gold.	1	
2.	b) Increases with increase in temperature	1	
3.	d) S m ⁻¹	1	
4.	d) All of these	1	
5.	a) 0	1	
6.	b) Frequency factor	1	
7.	a) Sc	1	
8.	a) Vitamin B ₁₂	1	
9.	c) Nal	1	
10.	b) n-Butane	1	
11.	b) 3-Phenylprop-2-en-1-al	1	
12.	c) Position isomerism	1	
13.	b) Ribose	1	
14.	d) Vitamin K	1	
15.	a) Both A and R are true, and R is the correct	1	
	explanation of A.		

16.	a) Both A and R are tree explanation of A.	ue, and R is the correct	1		
17.	a) Both A and R are tr	ue, and R is the correct	1		
	explanation of A.				
18.	d) A is false but R is tru	e	1		
19.	Ideal Solutions	Non-ideal solutions	2		
	1. Those liquid-liquid	1. Those liquid-liquid			
	solutions which obey	solutions which do not			
	Raoults' law at each	obey Raoults' law at			
	concentration.	each concentration.			
	2. The molecular	2. The molecular			
	interactions of solution	interactions of solution			
	is same as that of	is not same as that of			
	solute and solvent.	solute and solvent.			
	3. $\Delta V_{mix} = 0$	3. $\Delta V_{mix} \neq 0$			
	4. $\Delta H_{mix} = 0$	4. $\Delta H_{mix} \neq 0$			
	(any two differences, 1 mark each)				
	Or				
	Given molarity (M) = 0.15 M				
	Volume (V) = 250 mL				
	Molar mass of solute $(M_2) = 122 \text{ g/mol}$				
	Mass of solute (w ₂) =?				
	$\therefore M = \frac{w_2 \times 1000}{M_2 \times V}$				
	(1/2 mark)				
	$\therefore w_2 = \frac{M \times M_2 \times V}{1000}$				

	$\Rightarrow w_2 = \frac{122 \times 250 \times 0.15}{a}$	
	1000	
	(1/2 mark)	
	$\Rightarrow w_2 = 4.575 g$	
	$(1/_2 mark for correct answer, 1/_2 mark for unit)$	
20.	First Law: The amount of chemical reaction which	2
	occurs at any electrode during electrolysis by a	
	current is proportional to the quantity of electricity	
	passed through the electrolyte.	
	(1 mark)	
	(T mark)	
	Second Law: The amounts of different substances	
	liberated by the same quantity of electricity passing	
	through the electrolytic solution are proportional to	
	their chemical equivalent weights.	
	(1 mark)	
	(T Hark)	
21.	The reaction which is not of first order but behaves	
	like first order is called pseudo first order reaction.	
	(1 mark)	2
	Example: acid hydrolysis of ethyl acetate or inversion	
	of cane sugar	

	(Any one, 1 mark)	
22.	Interstitial compounds are those which are formed	
	when small atoms like H, C or N are trapped inside	
	the crystal lattices of metals.	
	(1 mark)	
	Interstitial compounds are well known for transition	2
	compounds due to their closed crystalline structure	Z
	with voids in them. The atomic size of transition	
	metals is very large hence have large voids to occupy	
	these small atoms.	
	(1 mark)	
23.	Alkyl halides react with sodium in dry ether to give	
	hydrocarbons containing double the number of carbon	
	atoms present in the halide. This reaction is known	
	as Wurtz reaction.	
	(1 mark)	
	$2CH_3Br + 2Na \xrightarrow{dry eth} CH_3CH_3 + 2NaBr$	
	Methyl bromide Ethane	0
	(1 mark)	Z
	Or	
	Groups which possess two different nucleophilic	
	centres and are called ambident nucleophiles.	
	(1 mark)	
	nitrite ion represents an ambident nucleophile with	
	two different points of linkage. The linkage through	

	oxygen results in alkyl nitrites while through nitrogen					
	atom, it leads to nitroalkanes.					
		(1 mark)				
24.	i) Methanoic acid is used in rubber, textile, dyeing,					
	leather and electroplating industries.					
	ii) Ethanoic acid is used as solvent and as vinegar					
	in food industry.					
	iii) Hexanedioic acid is used in the manufacture of					
	nylon-6, 6.					
	iv) E	sters of benzoic acid are used in perfumery.				
	v) S	odium benzoate is used as a food preservative.				
	vi) Higher fatty acids are used for the manufacture					
	of soaps and detergents.					
		(Any two, 1 mark each)				
25.	i)	$\begin{array}{c} CH_{3}COOH \xrightarrow{(i) LiAIH_{5} / Ether} CH_{3}CH_{2}OH \xrightarrow{PCI_{5}} CH_{3}CH_{2}CI \\ \hline \\ Ethanoic acid \\ CH_{3}CH_{2}COOH \xleftarrow{H^{+}/H_{2}O} CH_{3}CH_{2}CN \\ \hline \\ Propanoic acid \end{array}$				
		(1 mark)	2			
	ii)					
	Ni	$CH_3 - NO_2 \xrightarrow{Sn/HCl} CH_3 - NH_2 \xrightarrow{CHCl_3/KOH/\Delta} CH_3 - NC$ itromethane reaction) $H_3 - NC \xrightarrow{(Carbylamine reaction)} VA_3 - NC$				
	CH ₃ - NH - CH ₃					
		Dimethyleusine				
		Dimethylamine (1 mark)				

26.	Here	
	Vapour Pressure of solution at normal boiling point	
	$(p_1) = 1.004$ bar	
	Vapour Pressure of pure water at normal boiling	
	point	
	$(p^{o}_{1}) = 1.013$ bar	
	(½ mark)	
	Let mass of solution (W) = 100 g	
	(½ mark)	
	Mass of solute $(w_2) = 2 g$	3
	Mass of solvent $(w_1) = 98 g$	
	Molar mass of solvent (water) $(M_1) = 18 \text{ g/mol}$	
	According to Raoult's law:	
	$\frac{p_1^o - p_1}{p_1^o} = \frac{\frac{W_2}{M_2}}{\frac{W_1}{M_1} + \frac{W_2}{M_2}}$	
	(½ mark)	
	$\Rightarrow \frac{1.013 - 1.004}{1.013} = \frac{\frac{2}{M_2}}{\frac{98}{18} + \frac{2}{M_2}}$	
	(½ mark)	
	$\Rightarrow M_2 = 40.98 \ g/mol$	
	(¹ / ₂ mark for answer, ¹ / ₂ mark for unit)	
27.	T ₁ =298K	
	After the increase in temperature by 10K	3

 $T_2 = (T_1 + 10)K$ T₂=298+10=308K (1/2 mark) Let us take the value of K_1 =K Now, $K_2=2K$ Also, R=8.314JK⁻¹mol⁻¹ Now, substituting these values in the Arrhenius equation: $log(\frac{k_2}{k_1}) = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$ (1 mark) We get: $log(\frac{2k}{k}) = \frac{E_a}{2.303 \times 8.314} \left[\frac{308 - 298}{308 \times 298} \right]$ (1/2 mark) $::E_a = 52897.78 \text{Jmol}^{-1}$ $=52.9 \text{kJmol}^{-1}$ (1/2 mark for answer, 1/2 mark for unit)

28. When a particular oxidation state becomes less
stable relative to other oxidation states, one lower,
one higher, it is said to undergo disproportionation.
(1 mark)
For example,
manganese (VI) becomes unstable relative to
manganese (VI) and manganese (IV) in acidic
solution.
$$3MnO_4^{2^2} + 4H^+ \rightarrow MnO_4^- + MnO_2 + 2H_2O$$

(1 mark)
copper (I) compounds are unstable in aqueous
solution and undergo disproportionation.
 $2Cu^+ \rightarrow Cu^{2^+} + Cu$
(1 mark)
Or
Chromates are obtained by the fusion of chromite
ore (FeCr₂O₄) with sodium or potassium carbonate in
free access of air. The reaction with sodium
carbonate occurs as follows:
 $4FeCr_2O_4 + 8Na_2CO_3 + 7O_2 \rightarrow 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2$
(1 mark)
The yellow solution of sodium chromate is filtered
and acidified with sulphuric acid to give a solution

	from which orange sodium dichromate can be	
	crystallised.	
	$2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + 2Na^+ + H_2O$	
	(1 mark)	
	Sodium dichromate is more soluble than potassium	
	dichromate. The latter is therefore, prepared by	
	treating the solution of sodium dichromate with	
	potassium chloride and orange crystals of potassium	
	dichromate crystallise out.	
	$Na_2Cr_2O_7 + 2KCI \rightarrow K_2Cr_2O_7 + 2NaCI$	
	(1 mark)	
29.	Aryl halides are extremely less reactive towards	
	nucleophilic substitution reactions due to the	
	following reasons:	
	(i) <u>Resonance effect</u> :	
	In haloarenes, the electron pairs on	
	halogen atom are in conjugation with p-	2
	electrons of the ring and the resonating	3
	structures are possible. C–CI bond	
	acquires a partial double bond character	
	due to resonance. As a result, the bond	
	cleavage in haloarene is difficult than	
	haloalkane and therefore, they are less	

	reactive towards nucleophilic
	substitution reaction.
(ii)	Difference in hybridisation of carbon
	atom in C-X bond:
	The sp ² hybridised carbon with a
	greater s-character is more
	electronegative and can hold the
	electron pair of C-X bond more tightly
	than sp ³ -hybridised carbon in haloalkane
	with less s-character. Thus, C-CI bond
	length is shorter in haloarene. Since it
	is difficult to break a shorter bond than
	a longer bond, therefore, haloarenes are
	less reactive towards nucleophilic
	substitution reaction.
(iii)	Instability of phenyl cation:
	In case of haloarenes, the phenyl cation
	formed as a result of self-ionisation will
	not be stabilised by resonance and
	therefore, $S_N 1$ mechanism is ruled out.
(iv)	Because of the possible <u>repulsion</u> , it is
	less likely for the electron rich
	nucleophile to approach electron rich
	arenes.
	(any three, 1 mark each)
1	

In an amide ion, the negative charge is on the N-atom whereas in alkoxide ion, the negative charge is on the O-atom. Since O is more electronegative than N, O can accommodate the negative charge more easily than N. As a result, the amide ion is less stable than the alkoxide ion. Hence, amines are less acidic than alcohols of comparable molecular masses. (1 mark) Intermolecular hydrogen bonding is present ii) amines in primary but not in tertiarv amines (H-atom absent in amino group) so primary amines have higher boiling point than tertiary amines. (1 mark) iii) In aromatic amines, the $-NH_2$ group is attached to a $-C_6H_5$ group, which is an electron withdrawing group. So, the availability of a lone pair of electrons on N is decreased. Therefore, aliphatic amines are more basic than aromatic amines.

	1	
	(1 mark)	
31.	i) Phenol	
	(1mark)	
	ii) 8	
	(1 mark)	
	Or	
	Salicylic Acid	
	(1 mark)	4
	iii) Reimer-Tiemann reaction	
	(1 mark)	
	iv) Aspirin possesses analgesic, anti-inflammatory	
	and antipyretic properties.	
	(any one, 1 mark)	
32.	i) Amino acids have amino $(-NH_2)$ group, basic in	
	nature and accepts a proton and COOH group loses	
	a proton forming a dipolar ion, called the Zwitter ion.	
	In this form, amino acids behave both as acids and	
	bases, so they are amphoteric in nature.	
	(1 mark)	
	ii) Peptide bond	
	(1 mark)	
	iii) If more than ten α -amino acids are joined together	
	by peptide bond the structure thus formed is called	
	Polypeptides.	
	(1 mark)	

iv) Glycine/ Alanine/ Glutamic acid/ Aspartic acid/ Glutamine/ Asparagine/ Serine/ Cysteine/ Tyrosine/ Proline (Any one, 1 mark) Or 20 (1 mark) Nernst equation: 33. $E_{cell} = E_{cell}^{o} - \frac{0.0591}{n} \log \frac{Mg^{2+}}{Cu^{2+}}$ (1 mark) Calculation of E_{cell}: $E_{cell} = 2.70 - \frac{0.0591}{2} \log \frac{0.001}{0.0001}$ $(\frac{1}{2} \text{ mark})$ $E_{cell} = 2.70 - \frac{0.0591}{2} log10$ $(\frac{1}{2} \text{ mark})$ 5 $E_{cell} = 2.67 V$ (1/2 mark for answer, 1/2 mark for unit) Calculation of $\Delta_r G^o$: $\Delta_r G^\circ = -nFE^\circ_{cell}$ $(\frac{1}{2} \text{ mark})$ $\Delta_r G^{\circ} = -2 \times 96500 \times 2.70$ $(\frac{1}{2} \text{ mark})$ $\Delta_r G^{\circ} = -521100 \, Jmol^{-1} = -521.1 \, k Jmol^{-1}$ (1/2 mark for answer, 1/2 mark for unit) Or

Given $\kappa = 7.896 \times 10^{-5} \text{ S cm}^{-1}$ c = 0.00241 M Λ_m^0 = 390.5 S cm² mol⁻¹ Molar conductivity $\Lambda_m = \frac{\kappa \times 1000}{c}$ $(\frac{1}{2} \text{ mark})$ $\Lambda_m = \frac{7.896 \times 10^{-5} \times 1000}{0.00241}$ (1/2 mark) $\Lambda_m = 32.76 \, \mathrm{S} \, cm^2 \, mol^{-1}$ (1/2 mark for answer, 1/2 mark for unit) Degree of dissociation; $\alpha = \frac{\Lambda_m}{\Lambda_m}$ $(\frac{1}{2} \text{ mark})$ $\alpha = \frac{32.76}{390.5} = 0.084$ $(\frac{1}{2} \text{ mark})$ Dissociation constant; $K_a = \frac{c\alpha^2}{1-\alpha}$ (1/2 mark) $K_a = \frac{0.00241 \times (0.084)^2}{1 - 0.084}$ (1/2 mark) $K_a = 1.86 \times 10^{-5}$ (1 mark) 34. i) 3 (1 mark) 5 ii) 3 (1 mark)

iii) 2	
(1 mark)
iv) 3	
(1 mark)
v) 3	
(1 mark)
Or	
Ni is in the +2 oxidation state i.e., in d ⁸ configuration	
d^{8} configuration : $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$ 3d $4s$ $4p$ $4d$	
(½ mark)
There are 4 CN ⁻ or Cl ⁻ ions. Thus, it can either have	e
a tetrahedral geometry or square planar geometry.	
(1 mark)
Since CN ⁻ ion is a strong field ligand, it causes the	e
pairing of unpaired 3 <i>d</i> electrons.	
(½ mark)
$\frac{3d}{dsp^2}$ $\frac{4s}{dp}$ $\frac{4d}{4d}$	
(½ mark)
It now undergoes dsp ² hybridization.	
(½ mark)

Since all electrons are paired, it is diamagnetic. $(\frac{1}{2} \text{ mark})$ In case of $[NiCl_4]^{2-}$, Cl^- ion is a weak field ligand. Therefore, it does not lead to the pairing of unpaired 3d electrons. $(\frac{1}{2} \text{ mark})$ Therefore, it undergoes sp^3 hybridization. 11111111 4d3d 4s4psp3 $(\frac{1}{2} \text{ mark})$ Since there are 2 unpaired electrons in this case, it is paramagnetic in nature. $(\frac{1}{2} \text{ mark})$ 35. Case I Propanal + Propanal + dil. NaOH → $CH_3CH_2CH=C(CH_3)CHO$ (2-Methylpent-2-en-1-al) $(\frac{1}{2} \text{ mark} + \frac{1}{2} \text{ mark})$ Case II 5 Butanal + Butanal + dil. NaOH → $CH_3CH_2CH_2CH=C(C_2H_5)CHO$ (2-Ethylhex-2-en-1-al) $(\frac{1}{2} \text{ mark} + \frac{1}{2} \text{ mark})$ Case III Butanal + Propanal + dil. NaOH → $CH_3CH_2CH_2CH=C(CH_3)CHO$ (2-Methylhex-2-en-1-al)

