CLASS : 12th (Sr. Secondary)	4378/4328
Series : SS-M/2019	SET : A, B, C & D
Total No. of Printed Pages : 32	

MARKING INSTRUCTIONS AND MODEL ANSWERS

भौतिक विज्ञान

PHYSICS

ACADEMIC/OPEN

(Only for Fresh/Re-appear Candidates)

उप-परीक्षक मूल्यांकन निर्देशों का ध्यानपूर्वक अवलोकन करके उत्तर-पुस्तिकाओं का मूल्यांकन करें। यदि परीक्षार्थी ने प्रश्न पूर्ण व सही हल किया है तो उसके पूर्ण अंक दें।

General Instructions :

- (i) Examiners are advised to go through the general as well as specific instructions before taking up evaluation of the answer-books.
- (ii) Instructions given in the marking scheme are to be followed strictly so that there may be uniformity in evaluation.
- *(iii)* Mistakes in the answers are to be underlined or encircled.

4378/4328/(Set : A, B, C & D) P. T. O.

4378/4328

(iv) Examiners need not hesitate in awarding full marks to the examinee if the answer/s is/are absolutely correct.

(2)

- (v) Examiners are requested to ensure that every answer is seriously and honestly gone through before it is awarded mark/s. It will ensure the authenticity as their evaluation and enhance the reputation of the Institution.
- (vi) A question having parts is to be evaluated and awarded partwise.
- (vii) If an examinee writes an acceptable answer which is not given in the marking scheme, he or she may be awarded marks only after consultation with the head-examiner.
- (viii)If an examinee attempts an extra question, that answer deserving higher award should be retained and the other scored out.
- (ix) Word limit wherever prescribed, if violated upto 10%. On both sides, may be ignored. If the violation exceeds 10%, 1 mark may be deducted.

(3) 4378/4328

- (x) Head-examiners will approve the standard of marking of the examiners under them only after ensuring the non-violation of the instructions given in the marking scheme.
- (xi) Head-examiners and examiners are once again requested and advised to ensure the authenticity of their evaluation by going through the answers seriously, sincerely and honestly. The advice, if not headed to, will bring a bad name to them and the Institution.

महत्त्वपूर्ण निर्देश ः

- (i) अंक-योजना का उद्देश्य मूल्यांकन को अधिकाधिक वस्तुनिष्ठ बनाना है। अंक-योजना में दिए गए उत्तर-बिन्दु अंतिम नहीं हैं। ये सुझावात्मक एवं सांकेतिक हैं। यदि परीक्षार्थी ने इनसे भिन्न, किन्तु उपयुक्त उत्तर दिए हैं, तो उसे उपयुक्त अंक दिए जाएँ।
- (ii) शुद्ध, सार्थक एवं सटीक उत्तरों को यथायोग्य अधिमान दिए जाएँ।

4378/4328/(Set : A, B, C & D) P. T. O.

(4) **4378/4328**

- (iii) परीक्षार्थी द्वारा अपेक्षा के अनुरूप सही उत्तर लिखने पर उसे पूर्णांक दिए जाएँ।
- (iv) वर्तनीगत अशुद्धियों एवं विषयांतर की स्थिति में अधिक अंक देकर प्रोत्साहित न करें।
- (v) भाषा-क्षमता एवं अभिव्यक्ति-कौशल पर ध्यान दिया जाए।
- (vi) मुख्य-परीक्षकों / उप-परीक्षकों को उत्तर-पुस्तिकाओं का मूल्यांकन करने के लिए केवल Marking Instructions/ Guidelines दी जा रही है, यदि मूल्यांकन निर्देश में किसी प्रकार की त्रुटि हो, प्रश्न का उत्तर स्पष्ट न हो, मूल्यांकन निर्देश में दिए गए उत्तर से अलग कोई और भी उत्तर सही हो तो परीक्षक, मुख्य-परीक्षक से विचार-विमर्श करके उस प्रश्न का मूल्यांकन अपने विवेक अनुसार करें।

SET – A

1.	(i)	Grounding or Earthing	1
	(ii)	(B) $C^2 N^{-1} m^{-2}$	1

(5)	4378/4328
(iii) $\frac{1}{2} \in_0 E^2$	1
(iv) (A) Decreases	1
(v) $I = \frac{V}{R} = \frac{4V}{2K\Omega} = 2 \times 10^{-3} \text{ A}$	= 2mA 1
(vi) Zero	1
(vii) (D) Zero	1
(viii) Radiowaves	1
(ix) (C) Rutherford	1
(x) Becquerel	1
(xi) (D) All of these	1
(xii) Spherical wave front	1
(xiii) Photodetectors	1
(xiv) The loss of strength o	of a signal while
propagating through a m	nedium is called as
alternation.	1
4378/4328/(Set : A, B, C & D)	P. T. O.

(6) **4378/4328 2.** : Q = CV $: Q_1 = C_1V = 2pF \times 100 \ V = 2 \times 10^{-10} \text{ coulomb}$ $Q_2 = C_2V = 3pF \times 100 \ V = 3 \times 10^{-10} \text{ coulomb}$ $Q_3 = C_3V = 4pF \times 100 \ V = 4 \times 10^{-10} \text{ coulomb}$ 2

- **3.** Kirchoff's loop sale states that the algebric sum of changes in potential around a closed loop involving resistors and cells in the loop is zero. 2
- **4.** (i) Magnetic breaking in trains.

(ii)	Electromagnetic damping

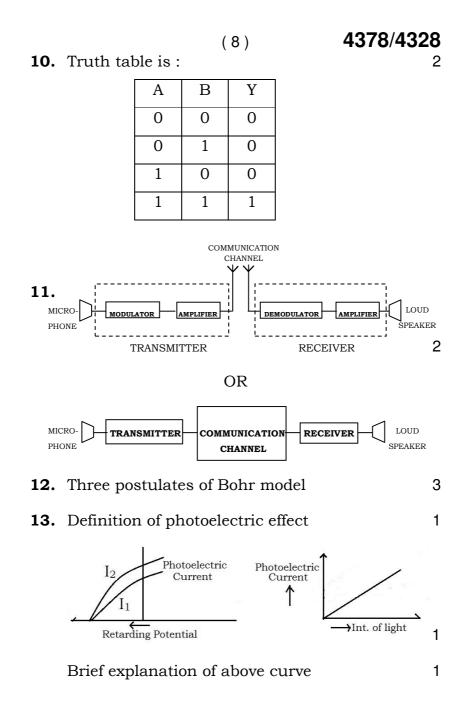
- (iii) Induction furnace
- (iv) Electric power meters $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
- 5. (i) When magnetic flux linked with coil changes, e.m.f is induced.
 - (ii) e.m.f. Induced is equal to negative rate of change in Magnetic flux.

(7) **6.** As. $\lambda = \frac{C}{v}$ $\therefore \lambda_1 = \frac{3 \times 10^8 m/s}{7.5 MHz} = 40 m$ $\lambda_2 = \frac{3 \times 10^8 m/s}{12 \times 10^6 Hz} = 25 m$

So, corresponding wavelength band is 40 m to 25 m. 2

4378/4328

7. As.
$$\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34}}{0.40 \times 1.0 \times 10^3 m/s}$$
 2


$$= 1.6 \times 10^{-35} m$$
.

8. Basic nuclear process in β^{-} decay is

$$n \to p + e^- + \overline{v}$$
 1

$${}^{210}_{83}Bi \to {}^{210}_{84}P_0 + e^- + \overline{\nu}$$
 1

9. I-V charact. of Zener diode
1

	(9)	4378/4328
14.	Polarisation by reflection	1½
	Deduction of Brewster's law	11/2

15. Angular frequency at resonance,

$$\omega_0 = \sqrt{\frac{1}{LC}} = \sqrt{\frac{1}{50H \times 8\mu F}} = 50Hz \qquad 1$$

Current at resonance ;
$$I = \frac{220V}{44\Omega} = 5A$$
 1

$$Z = R = 44\Omega$$
$$I = \frac{V}{Z} = \frac{V}{R}$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}; \quad X_L = X_C$$
$$Z = R = 44\Omega \qquad 1$$

16. Ampere circuital law 2

Expression
$$B = \frac{\mu_0 I}{2\pi r}$$
 ^{1/2}

17. Principle of potentiometer $\in T \in R$ 1

Circuit diagram for comparing

- emfs of two cells 2
- **4378/4328/(Set : A, B, C & D)** P. T. O.

(10) **4378/4328 18.** Derive expression $E = \frac{q}{4\pi\epsilon_0 r^2}\hat{r}$ 3

OR

$$E = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r^2}$$

$$\frac{\sigma}{\epsilon_0} \frac{R^2}{r^2}$$

19.	Diagram of Hysteresis loop	1
	Explanation of Hysteresis loop with retentive	ity
	and coercivity	3
	Discuss its uses to select materials to ma	ke
	permanent magnet and electromagnets $1/2$ +	1⁄2

OR

Principle of Galvanometer	2
Conversion of galvanometer to Ammeter	3
[Circuit + Explanation]	

	(11)	4378/4328
20.	Labelled diagram	2
	Definition of magnifying power	2
	Expression for magnifying power	1

OR

	Young double slit experiment diagram	1
	Explanation for position of Max and Minima an	
	fringe width	
21.	Circuit diagram of CE transistor	2
	Input characteristics sketch	1
	Output characteristics sketch	1
	Definition of current amplification factor	1

OR

Symbol of p-n-p transistor	1
Biasing of p-n-p transistor	1
Explanation of transistor action	3

4378/4328/(Set : A, B, C & D)	P. T. O.
-------------------------------	----------

		(12) SET – B	4378/4328
1.	(i)	Earth	1
	(ii)	(A) $N^1 C^{-2} m^2$	1
	(iii)	$\frac{1}{2}CV^2$	1
	(iv)	(D) Does not change	1
	(v)	$I = \frac{V}{R} = \frac{2V}{4K\Omega} = \frac{2V}{4\times10^3\Omega} = 0.5mL$	<u>A</u> 1
	(vi)	-1	1
	(vii)	(B) 90°	1
	(viii)	Ultra-Violet (UV) rays.	1
	(ix)	(C) $10^{-15}m$ to $10^{-14}m$	1
	(x)	Chadwick	1
	(xi)	(D) Total Internal Reflection	1
	(xii)	Plane wavefront	1

4378/4328/(Set : A, B, C & D)

(13) **4378/4328**

(xiii) Solar cells or photovoltaic cells

(xiv) Range is the largest distance between a source and a destination up to which the signal is received with sufficient strength.

2.
$$\therefore$$
 $Q = CV$

- $\therefore Q_1 = C_1 V = 3pF \times 200 V = 6 \times 10^{-10} \text{ coulomb}$
 - $Q_2 = C_2 V = 6pF \times 200 V = 12 \times 10^{-10}$ coulomb
 - $Q_3 = C_3 V = 9 p F \times 200 V = 18 \times 10^{-10}$ coulomb 2

3. Any *two* conditions out of *three*.

- Lenz's law states that the polarity of the induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produces it.
- 5. Transformer1Diagram1
- **4378/4328/(Set : A, B, C & D)** P. T. O.

1

2

(14) **4378/4328**
6.
$$:: v = \frac{C}{\lambda}$$

 $:: v_1 = \frac{3 \times 10^8 m/s}{100 m} = 3 \times 10^6 Hz = 3MHz$
 $v_2 = \frac{3 \times 10^8 m/s}{50 m} = 6 \times 10^6 Hz = 6MHz$

So, corresponding frequency band is 3 MHz to 6 MHz.

7.
$$\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34} J/S}{0.060 Kg \times 1.0 m/s} = 1.1 \times 10^{-32} m$$
 2

8. Basic nuclear process underlying β^+ decay is

$$p \rightarrow n + e^+ + v$$
 1

and
$${}^{11}_{6}C \rightarrow {}^{11}_{5}\beta + e^+ + v$$
 1

9. Circuit diagram of FW rectifier with capacitor filter

input & output voltage waveform of FW rectifier $$1\!/_2 + 1\!/_2$$

- (15)
- **10.** Truth table is :

А	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

- 11. Process of superimposition of low frequencies on high frequencies carries signal is known as modulation. Modulation is need as the low frequencies cannot be transmitted to long distances. 1 + 1 = 2
- **12.** Curve of Binding energy1*Two* main features2
- 13. Curve 1
 Description of variation 2
 14. Definition of diffraction of Light 1
 Diagram 2
 4378/4328/(Set : A, B, C & D) P. T. O.

2

(16) **4378/4328 15.** Angular frequency at resonance

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{80H \times 5\mu F}} = 50 Hz$$
 1

Impedance is $Z = \sqrt{R^2 + (X_L - X_C)^2}$

at resonance, $X_L = X_C$

$$\therefore \ Z = R = 60 \ \Omega$$

Current at resonance :

$$I = \frac{V}{Z} = \frac{V}{R} = \frac{240V}{60\,\Omega} = 4A$$

16. Force between two parallel currents is $F_{ba} = \frac{\mu_0 I_a I_b}{2\pi d} L$

where :

 I_a is current in wire a

- I_b is current in wire b
- L is segment of wire b
- d is \perp distance between two wires
- μ_0 is magnetic permeability of free space

1

	()	8/4328
	One ampere is the value of that steady	^v current
	which when maintained in each of the	two very
	long, straight, parallel conductors of r	negligible
	cross-section and placed one meter	apart in
	vacuum would produce on each o	of these
	conductors a force equal to 2×10^{-7}	Newtons
	per metre of length.	1
	Parallel currents attract and	
	antiparallel current repel	∕2 + ¹ ∕2 = 1
17.	Diagram	1
	-	
	Principle : It works on principle of	
	Wheatstone bridge	1
	Unknown resistance, $R = S\left(\frac{l_1}{100 - l_1}\right)$) 1
18.	Gauss's law statement	1
	Proof	2
19.	Circuit diagram of CE transistor	2
	Input characteristics sketch	1
4378	3/4328/(Set : A, B, C & D)	P. T. O.

(18) **4378/4328**

Output characteristics sketch	1

Definition of	of Input 8	k output resistance	1/2 + 1/2
---------------	------------	---------------------	-----------

OR

	Circuit diagram of CE Transistor amplifier	2
	Description	3
20.	Explanation of principle of galvanometer	2
	Convention to voltmeter	3
	[Circuit + Explain]	

OR

Retentivity	1
Coercivity	1
Selection of materials	1½ + 1½ = 3

	(19)	4378/4328
21.	Define polarization	1
	Polarisation by reflection	2
	Polarisation by scattering	2

OR

Labelled diagram of compound microscope	2
Definition of magnifying power	2
Expression for magnifying power	1

SE	Т	_	С
SE	L	-	C

1.	(i)	Milikan	1
	(ii)	(A) K (dielectric constant)	1
	(iii)	$\frac{1}{2}QV$	1
	(iv)	(A) Increases	1
	(v)	$I = \frac{V}{R} = \frac{9V}{3K\Omega} = \frac{9V}{3 \times 10^3 \Omega} = 3 \times 10^{-3} A = 3 \text{ mA}$	1

4378/4328/(Set : A, B, C & D) P. T. O.

(vi)	(20) 4	378/4328 1
()		
(vii)	(B) Zero	1
(viii)	Infrared rays	1
(ix)	(C) Thomson model	1
(x)	AH Becquersel	1
(xi)	(D) Dispersion	1
(xii)	Plane wave-front	1
(xiii	LED (Light Emitting Diode)	1
(xiv)	Process of superimposition	of low
	frequencies on high frequency ca	rrier waves
	is known as modulation.	1

2.
$$\therefore$$
 $Q = CV$

 $\therefore Q_1 = C_1 V = 2pF \times 50 \ V = 1.0 \times 10^{-10} \text{ coulomb}$ $Q_2 = C_2 V = 4pF \times 50 \ V = 2.0 \times 10^{-10} \text{ coulomb}$ $Q_3 = C_3 V = 6pF \times 50 \ V = 3.0 \times 10^{-10} \text{ coulomb} \ 2$

(21) 4378/4328

- 3. Kirchoff's junction rule states that at any junction in an electric circuit, the sum of the currents entering the junction is equal to the sum of currents leaving the junction.
- 4. (i) When magnetic flux linked with coil changes, e.m.f. in Induced.
 - (ii) The emf induced in a coil of N turns is directly related to the rate of change of flux through it $\epsilon = -N \frac{d\phi_B}{dt}$.
- 5. In an electrical circuit, the resistance offered by an Inductor to the current is called as Inductive reactance; $X_L = W_L$ where W is angular frequency of ac supply. 1

At resonance, inductive reactance becomes equal to capacitive reactance i.e. $X_L = X_C$ or $W_0 L = \frac{1}{W_0 C}$.

4378/4328/(Set : A, B, C & D) P. T. O.

6. As.
$$v = \frac{C}{\lambda}$$

 $\therefore v_1 = \frac{3 \times 10^8 m/s}{40 m} = 7.5 \times 10^6 Hz = 7.5 MHz$

$$v_2 = \frac{3 \times 10^8 m/s}{25 m} = 12 \times 10^6 Hz = 12 MHz$$

So, the frequency band will be 7.5 *MHz* to
$$12 MHz$$
.

7.
$$\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34} Js}{1.0 \times 10^{-9} Kg \times 2.2 m/s} = 3 \times 10^{-25} \text{ meter } 2$$

8. Basic nuclear process underlying β -decay is

$$n \rightarrow p + e^- + \overline{v}$$

Process of this decay for $\frac{32}{15}P$ is

$${}^{32}_{15}P \rightarrow {}^{32}_{16}S + e^- + \overline{v}$$
 1 + 1 = 2

9. Circuit diagram of FW rectifier 1

Input & output waveform 1

4378/4328

2

10. Truth table is :

А	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

11. Electronic communication system refers to the faithful transfer of information or message, available in the form of electrical voltage and current, from one point to other point.

(23)

Three basic units of a electronic communication system are transmitter, transmission channel and receiver. 1

12. When a heavy nucleus breaks in to smaller nucleii, the nuclear process is known as nuclear fission.

Possible fission reactions of ${}^{235}_{92}U$ are :

$${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{236}_{92}U \rightarrow {}^{144}_{56}Ba + {}^{89}_{36}Kr + {}^{3}_{0}n$$

Use : Nuclear Reactor/Nuclear Bomb. 1

4378/4328/(Set : A, B, C & D) P. T. O.

-

- (24) **4378/4328 13.** Variation curve 2 Brief description 1
- **14.** Definition of Interference
 1

 four requirements for sustained interference
 1

 $\frac{1}{2} \times 4 = 2$

15. Angular frequency at resonance,

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{16H \times 25\mu F}} = 50 Hz$$

Impedance is $Z = \sqrt{R^2 + (X_L - X_C)^2}$ but at resonance, $Z = R = 25 \ \Omega$ Current at resonance $I = \frac{V}{Z} = \frac{V}{R}$

$$= \frac{225V}{25\Omega} = 9A \qquad 1+1+1 = 3$$

16. Magnetic moment of a revolving electron is

$$M = \left(\frac{e}{T}\right)\pi r^2$$
 OR $M = \frac{evr}{2}$ OR $M = n(\mu_B)$ 2

where $\mu_B = \frac{eh}{4\pi}$

This value of magnetic moment for I orbit is called as Bohr Magneton 1

17	(25)	4378/4328
17.	Wheatstone bridge	I
	Labelled diagram	1
	Derive condition $\frac{R_2}{R_1} = \frac{R_4}{R_3}$	1
18.	To prove $E = 0$ inside a shell	3
1 9 .	Same as Answer of Q- 20 of Set A	5

OR

Same as Answer of Q-**20**, of Set **A**.

OR

Same as Answer of Q. **21** of Set **A**.

21. Same as Answer 'or' Q. **19** of Set **A**. 5

OR

Same as Answer of Q. 19 of Set A.

4378/4328/(Set : A, B, C & D) P. T. O.

		(26) SET – D	4378/4328	3
1.	(i)	6×10 ¹⁸		1
	(ii)	(C) Repulsive		1
	(iii)	$\frac{1}{2} \cdot \frac{Q^2}{C}$		1
	(iv)	(D) Does not change		1
	(v)	$I = \frac{V}{R} = \frac{5V}{5K\Omega} = 1 \times 10^{-3} A = 1 \text{ mA}$		1
	(vi)	Zero		1
	(vii)	Gamma rays		1
	(viii)	(B) Rutherford		1
	(ix)	(A) 90°		1
	(x)	Becqueral		1
	(xi)	(C) Scattering		1

4378/4328/(Set : A, B, C & D)

	(27)	4378/4328
(xii)	Cylindrical wave front	1

- (xiii) Zener diode 1
- (xiv) A receiver extracts the desired messagesignals from the received signals at thechannel output.
- **2.** As Q = CV

$$\therefore Q_1 = C_1 V = 4pF \times 150 \ V = 6 \times 10^{-10} \text{ coulomb}$$
$$Q_2 = C_2 V = 8pF \times 150 \ V = 12 \times 10^{-10} \text{ coulomb}$$
$$Q_3 = C_3 V = 12pF \times 150 \ V = 18 \times 10^{-10} \text{ coulomb}$$
2

2

3. Any *two* limitations out of three.

4. When bulk pieces of conductors are subjected to changing magnetic flux, induced currents are produced in them. Their flow patterns resembles swirling eddies in water. So these currents are called eddy currents.

(28) 4378/4328

5. In an ac circuit, resistance offered by a capacitor to the flow of current is called as capacitive reactance :

$$X_c = \frac{1}{\omega c}$$

At resonance, it becomes equal to the inductive reactance $X_L = X_C$ i.e. $\frac{1}{\omega_0 C} = \omega_0 L$. 1 + 1 = 2

6. As.
$$\lambda = \frac{C}{v}$$

$$\therefore \ \lambda_1 = \frac{C}{v_1} = \frac{3 \times 10^8 \, m/s}{3 \, MHz} = \frac{3 \times 10^8 \, m/s}{3 \times 10^6 \, Hz} = 100 \, m$$

$$\lambda_2 = \frac{C}{v_2} = \frac{3 \times 10^8 \, m/s}{6 M Hz} = \frac{3 \times 10^8 \, m/s}{6 \times 10^6 \, Hz} = 50 \, m$$

So, corresponding wavelength band will be 100 m to 50 m. 2

7.
$$\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34} \, Js}{0.050 \, Kg \times 2.0 \, Km \, / \, s} = 6.6 \times 10^{-36} \, m$$
 2

- (29) **4378/4328 8.** Basic process is $p \rightarrow n + e^{+} + v$ and ${}^{22}_{11}Na \rightarrow {}^{22}_{10}Na + e^{+} + v$ 1 + 1 = 2
 - 9. Circuit diagram of HW rectifierInput and output waveforms1

2

10. Truth table is :

А	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

- 11. Process of superimposition of low frequencies on high frequency carrier signal is called as modulation.
 Modulation is of three types : Amplitude Modulation (AM), Frequency Modulation (FM) and Phase Modulation (PM).
- **4378/4328/(Set : A, B, C & D)** P. T. O.

(30) **4378/4328 12.** The nuclear process in which lighter nucleii combine to form a larger nucleus is called as nuclear fusion. 1 Example : 1 use : 1 $4_1^1H + 2e^- \rightarrow {}^4_2He + 2v + 6\gamma + 26.7 MeV$ **13.** Curve for variation 2 Brief description 1

- **14.** Same as Answer of Q. **14** of Set **B**. 3
- 15. At resonance,

angular frequency $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{4H \times 100 \mu F}}$

 $\therefore \omega_0 = 50 Hz$

Impedance, $Z = \sqrt{R^2 + (X_L - X_C)^2}$ But at resonance $Z = R = 42\Omega$ Current at resonance $I = \frac{V}{Z} = \frac{V}{R} = \frac{210V}{42\Omega} = 5A$ 1+1+1=3

16	(31) 43 Definition of solenoid	78/4328
10.		1
	Expression for mag. field	1
	Direction by right hand rule	1
17.	Principle	1
	Answer of Q. 17 of Set A	
	Circuit diagram for determining	internal
	resistance by potentiometer.	2
18.	Derivation of $E = \frac{\lambda}{2\pi \epsilon_0 r} \hat{n}$	3
19.	Domain theory of ferromagnetism	4
	Dependence of temperature	1
	OR	
	Same as Answer of Q. 20 of Set B.	5
20.	Same as Answer of Q. 21 of Set B .	5

OR

Same as Answer of 'or' Q. 21 of Set B.	5
--	---

4378/4328/(Set : A, B, C & D)	P. T. O.
-------------------------------	----------

(32) **4378/4328 21.** Same as Answer of Q. **19** of Set **B**. 5

OR

Same as Answer 'or' Q. **19** of Set **B**.