

BOARD OF SCHOOL EDUCATION HARYANA

Syllabus and Chapter wise division of Marks (2023-24)

Class-XII

Subject: Biotechnology

Code: 871

General Instructions:

1. There will be an Annual Examination based on the entire syllabus.

2. The Annual Examination will be of 60 marks, Practical Examination will be of 20 marks and 20 marks weightage shall be for Internal Assessment.

3. For Practical Examination:

- i) Two experiments of 6 marks each.
- ii) One activity of 3 marks.
- iii) Practical record of 2 marks.
- iv) Viva-voce of 3 marks.
- 4. For Internal Assessment:

There will be Periodic Assessment that would include:

- i) For 4 marks- Two SAT exams will be conducted and will have a weightage of 04 marks towards the final Internal Assessment.
- ii) For 2 marks- One half yearly exam will be conducted and will have a weightage of 02 marks towards the final Internal Assessment.
- iii) For 2 marks- One Pre-Board exam will be conducted and will have a weightage of 02 marks towards the final Internal Assessment.
- iv) For 2 marks- Subject teacher will assess and give maximum 02 marks for CRP (Classroom participation).
- v) For 5 marks- A project work to be done by students and will have a weightage of 05 marks towards the final Internal Assessment.
- vi) For 5 marks- Attendance of student will be awarded 05 marks as:

75% to 80% - 01 marks Above 80% to 85% - 02 marks Above 85% to 90% - 03 marks Above 90% to 95% - 04 marks Above 95% to 100% - 05 marks

Course Structure (2023-24)

Class- XII

Subject: Biotechnology

Code: 871

Sr. No.	Unit	Unit Chapter	
1	Protein and Gene Manipulation	Recombinant DNA Technology Protein Structure and Engineering	30
	the	Genomics and Bioinformatics	the state
2	Cell Structure and Genetic Manipulation	Microbial Cell Culture and its Application	
		Plant Cell Culture and Application	30
		Animal Cell Culture and Application	
		Total	60
	Practica	l Examination	20
	Interna	20	
	Gra	100	

Unit V: PROTEIN AND GENE MANIPULATION

Chapter 1: Recombinant DNA Technology

Introduction; Tools of rDNA Technology: Restriction enzymes, Restriction Fragment Length Polymorphism (RFLP), Other enzymes used in cloning, Vectors: Plasmids, vector based on bacteriophages, cosmids, YAC vectors, BAC vectors, Animal and plant viral vectors, Host cells; Marking rDNA; Introduction of rDNA to Host Cells: Transformation, Transfection, Electroporation, Microinjection, **Biolistics**; **Identification of Recombinants; Polymerase Chain Reaction** (PCR); Hybridisation Techniques: Southern Hybridisation Technique; DNA Library: DNA Sequencing: Dideoxynucleotide chain termination method; Site-directed **Mutagenesis**

Unit V: PROTEIN AND GENE MANIPULATION

Chapter 2: Protein Structure and Engineering

Introduction to the World of Proteins; 3-D Shape of Proteins: Non-covalent bonds: ionic bonds, hydrogen bonds, Van der Waals forces, hydrophobic interactions; Structure-Function relationship in Proteins: Chymotrypsin - a proteolytic enzyme, Molecular Disease- Sickle cell anaemia, Protein Finger printing-Peptide Mapping, 2-D Gel Electrophoresis; Purification of Proteins: Calculation of amount of bacterial ferment required, Downstream Processing, Aqueous two-phase partition, Industrial scale production of proteins, Special techniques for therapeutic /diagnostic proteins; Characterisation of Proteins: Mass spectrometry; Protein Based Products: Blood products and vaccines, Therapeutic antibodies and enzymes, Therapeutic hormones and growth factors, Regulatory factors, Analytical applications, Industrial enzymes, Functional non-catalytic proteins, Nutraceutical Proteins; Designing Proteins (Protein Engineering): Improving laundry detergent Subtilisin, Creation of Novel Proteins, Improving nutritional value of cereals and legumes.

Unit V: PROTEIN AND GENE MANIPULATION

Chapter 3: Genomics and Bioinformatics

Introduction: Progress in stages, Evolving approaches, genomics, Functional genomics; Structural Genome Sequencing Projects: Directed sequencing of Bacterial Artificial Chromosome (BAC) contigs, Random shotgun sequencing; Gene prediction and counting; Genome Similarity, SNPs and Comparative Genomics; Functional Genomics: Fluorescence in situ hybridization, Microarray Technology: principle, procedure, interpretation; Proteomics: Types of Proteomics: Expression proteomics, Structural proteomics, Functional proteomics, Genes and Proteins: Number of genes vs Number of proteins; History of Bioinformatics; Sequences and nomenclature: DNA and protein sequences, The concept of directionality, Different types of sequences; Information Sources: Major databases: NCBI, Database retrieval tools, BLAST family of search tools, Resources for gene level sequences, Analysis using Bioinformatics tools.

Unit VI: CELL CULTURE AND GENETIC MANIPULATION

Chapter 1: Microbial Cell Culture and Its Applications

Introduction; Microbial culture techniques: Nutrients for microbial culture, Culture Procedures, Equipment for microbial culture, Types of microbial culture: Batch culture, Fed-batch culture, continuous culture; Measurement and kinetics of microbial growth: Measurement of microbial growth, Growth kinetics and specific growth rate; Scale-up of microbial processes; Isolation of microbial products; Strain isolation, improvement and preservation: Strain isolation, Strain improvement: Mutation Selection, Genetic Engineering Techniques, Metagenomics, Strain preservation, Culture Collections Centers; Applications of microbial culture technology; Biosafety issues in Microbial Technology.

Unit VI: CELL CULTURE AND GENETIC MANIPULATION

Chapter 2: Plant Cell Culture and Applications

Introduction; Cell and Tissue Culture Techniques: Basic Technique, Nutrient Media, Types of cultures: organ culture,

explant culture, callus culture, cell suspension culture, mass cell culture, protoplast culture, protoplast fusion, Plant Regeneration Applications of Cell and Tissue Culture: pathways; Micropropagation, Virus-free plants, Artificial seeds, Embryo rescue, Haploids and triploids, Somatic hybrids and cybrids, Production of secondary metabolites, Somaclonal variation, In vitro plant germplasm conservation; Gene transfer methods in plants: Vector-mediated or indirect gene transfer, Vectorless or direct gene transfer, Transgene analysis; Transgenic plants with beneficial traits: Stress tolerance, Biotic stress tolerance: Herbicide tolerance, Pest resistance, Disease resistance, Virus resistance, Fungi and bacteria, Abiotic stress tolerance: Delayed fruit ripening, Male sterility, Transgenic plants as bioreactors, Nutrient quality, Diagnostic and therapeutic proteins, Edible vaccines, Biodegradable plastics, Metabolic engineering and secondary products, Other applications; Biosafety in Plant Genetic Engineering.

Unit VI: CELL CULTURE AND GENETIC MANIPULATION

Chapter 3: Animal Cell Culture and Applications

Introduction; Animal Cell Culture Techniques: Features of animal cell growth in culture, Primary Cell Cultures, Secondary Cell Cultures and Cell Lines, Types of Cell Lines: Finite Cell Lines, Continuous Cell Lines, Physical environment for culturing Animal Cells: temperature, pH, osmolality, Medium, serum and antibiotics, vessels and equipments required for animal cell culture, tissue culture hood, CO₂ incubator, centrifuge, inverted microscope; **Characterization of Cell Lines:** storage and revival of cells; **Methods of Gene Delivery into Cells; Scale-up of Animal Culture Process; Applications of Animal Cell culture:** Erythropoietin, Factor VIII, Factor IX, Tissue Plasminogen Activator (tPA), Hybridoma Technology for Monoclonal Antibody Production, Therapeutic mAb – OKT3, Therapeutic mAb – Herceptin; **Stem Cell Technology:** ES Cell culture and its applications; **Tissue engineering.**

Practicals:

- 1. Use of special equipment in biotechnology experiments
- 2. Isolation of bacterial plasmid DNA

5

3. Detection of DNA by gel electrophoresis

4. Estimation of DNA by UV spectroscopy

5. Isolation of bacteria from curd & staining of bacteria

6. Cell viability assay using Evan's blue dye exclusion method

7. Data retrieval and database search using internet site NCBI and download a DNA and protein sequence from internet, analyse it and comment on it

8. Reading of a DNA sequencing gel to arrive at the sequence

Monthwise Syllabus Teaching Plan (2023-24)

Class- XII Subject: Biotechnology

Code: 871

Month	Month Subject- content		Revision	Practical	
		Periods	Periods	Work	
April	Unit V Chapter 1: Recombinant	22	2		
/	DNA Technology	1	Pres		
	Practical: Use of special	0	11		
P 1	equipment in	12			
10-	ovporiments	N		0	
	experiments	Lhr		Tab	
I nc	Practical: Isolation of			2	
	bacterial plasmid DNA	1			
	Practical: Detection of				
K	DNA by gel	2		2	
	electrophoresis			1	
	Practical: Estimation of	2	-	2	
	DNA by UV spectroscopy	22	2		
May	Unit V Chantan 2: Dustain	22	2		
	Chapter 2: Protein			1	
	Structure and Engineering				
	Practical: Isolation of				
	bacteria from curd &			2	
	staining of bacteria				
June	6		1	1	
	Summer Vacation (Any Project work should be given related to				
	above chapters)				
July	Unit V	18	2		
	Chapter 3: Genomics,				
	Proteomics and				

	Bioinformatics (Introduction, Genome Sequencing Projects, Gene prediction and counting) Practical: Cell viability assay using Evan's blue dye exclusion method	त्रय		4
August	Unit V	20	4	
1	Chapter 3: Genomics,	~	147	
	Proteomics and	5	10	
1	Bioinformatics			CAL
14	(Genome Similarity,	12.V		3
1 hr	SNPs and Comparative	- 10		(ah)
1	Genomics, Functional			-
	History of Bioinformatics:			
	Sequences and			
	nomenclature			
V	Information Sources)	C C		1
			1	
	Practical: Data retrieval	\mathcal{R}		
1	and database search using	5	-	2 /
	internet site NCBI and	2	1 16	
	download a DNA and	- N	6.43	6
	protein sequence from	-		/
	internet, analyse it and			
	comment on it.			
	Practical: Reading of a			4
	DINA sequencing gel to			4
Sontombor	Devision for Holf Veerly		16	
September	Fram		10	
	Half-Yearly Exam			
1	l 🖌	1	1	1

October	Unit VI Chapter 1: Microbial Cell Culture and its Applications.	20	4	
November				
	Unit VI			
	Chapter 2: Plant Cell	22	2	
	Culture and Applications.			
December	Unit VI	22	2	
	Chapter 3: Animal Cell	Y ZT	2	
	Culture and Applications.	17	3	
			5/20	- A
January	DV.	~	(47)	
	Revision	2	16	
February	Revision	25	24	CAL
1		m		Tan
March	Annual Examination	K		0

Note:

• Subject teachers are advised to direct the students to prepare notebook of the Terminology/Definitional Words used in the chapters for enhancement of vocabulary or clarity of the concept.

Prescribed Books:

- 1. Biotechnology Text book for Class XII, CBSE Publication
- 2. Laboratory Manual-Biotechnology-Class XII, CBSE Publication

Question Paper Design (2023-24)

Class- XII

Subject: Biotechnology

Code: 871

Type of Question	Marks	Number	Description	Total Marks
Objective	1	15	6 Multiple Choice	15
Questions	2		Questions,	
	C .		3 Fill in the Blanks	
			Questions,	
1 th			3 One Word Answer Type	2V
145			Questions, 3 Assertion-	1
hc.	1 .	0	Reason Questions	an
Very Short 2 6 Internal choice will be given		12		
Answer Type		0	in any 2 questions	-
Question				
Short Answer	3	6	Internal choice will be given	18
Туре			in any 2 questions	1
Question				
Essay	5	3	Internal options will be given	15
Answer Type			in all the questions	
Question				
Total		30		60
	200		N	